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ABSTRACT

In this paper, we study a modified version of a computational
model of the human peripheral and central auditory system [1][2],
and examine the validity of its output from two practical perspec-
tives: one that considers the well-known Mel-Frequency Cepstral
Coefficients (MFCC) as an approximate representation of the phys-
iology-based early auditory processing result, and the other that
allows the derivation of feature vectors from the dimension ex-
panded cortical response of the central auditory system for use in a
conventional phoneme recognition task. In addition to confirming
the relevancy of the model under existing statistical speech recog-
nition framework, we conduct a preliminary study of the cortical
response in connection with known physiological studies, to find
new possibilities in using the auditory model to perform cognitive
functions based on a better understanding of the human auditory
system. In particular, the cortical response may be a place-coded
data set where sounds are categorized according to the regions con-
taining their most distinguishing features. The results of this study
encourage us to develop hierarchical, detection-based methods in
which this mechanism may be utilized to simulate a variety of hu-
man perceptual and cognitive functions.

1. INTRODUCTION

Machine listening systems often employ rudimentary simulations
of the human auditory system to mimic human perception and
cognition of sound. For example, in the case of speech recogni-
tion, the Linear Predictive Coding (LPC) model spectrum is built
on an all-pole model of the resonances of the vocal tract, while
the MFCC is based on an approximation of the critical bands.
Most of these front-end processing methods, however, are based
on only crude approximations of the peripheral auditory system,
with little or no consideration for the latter stages along the au-
ditory cortex where signal representations may undergo further
transformations. Building a machine that approaches the capabil-
ity of humans is still far beyond our reach. It was shown in [3]
that automatic speech recognition systems perform far worse than
human listeners under noisy conditions. Hence, while much re-
search is aimed at developing functional approximations to human
capabilities, there is an intense interest in building computational
models that accurately and extensively mimic human physiology.
Studying such physiological models may also lead to a better un-
derstanding of human audition, thereby offering the possibility of
inducing improved functional models.

Relatively recent developments by Shamma [1] include sim-
ulations of not only the peripheral auditory organs but also the
neural encoding of the primary auditory cortex(A1) in the cen-

tral auditory system. The one-dimensional auditory spectrum pro-
duced by the early stages of the model are transformed into a three-
dimensional, data-redundant response in the A1, which may en-
code auditory features that are relevant to perception and cognition
in a more explicit, place-coded manner. In this study, we develop a
modified version of this model and examine its validity as a repre-
sentation of auditory signals. Our study was carried out along two
directions. First, we study the computational relationship between
the MFCC and the auditory spectrum. The widely-used MFCC
was proposed more than two decades ago as a representation based
on a crude approximation of the auditory response, with little rig-
orous justification for its implementation. In contrast, the auditory
spectrum is produced by a more elaborate, physiologically moti-
vated (and perhaps better justified) early auditory model. Such
a comparison would provide insights for developing more refined
parametrization methods for speech and audio signals. Second, we
(reverse) validate the new dimension-expanded cortical response
model by deriving speech parameters from the model and applying
them to a phoneme recognition task. We find the cortical response
is capable of providing speech features that are comparable to the
MFCC in terms of recognition accuracy.

We shall re-emphasize that the aim of our study is to strive
for more thorough modeling of cognition and perception than to
simply derive parameters for automatic speech recognition. The
purpose of experimenting with a conventional HMM-based sys-
tem is only to validate this new auditory model within existing
recognition framework. By studying the dimension-expanded cor-
tical response in connection with known physiological studies, we
could gain an enhanced understanding of auditory physiology, and
develop better functional and computational models for not only
achieving more robust recognition but solving other interesting
auditory analysis problems. A preliminary study of the variance
of the cortical response hints at a place-coding mechanism that
may offer us many new possibilities of utilizing the dimension-
expanded data in a general, hierarchical framework for the detec-
tion of perceptual and cognitive cues.

2. THE AUDITORY SPECTRUM AND THE MFCC

The auditory spectrum [2] is a one-dimensional spectral represen-
tation produced by a computational model of the mechanical and
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Fig. 1. Comparing the auditory spectrum with the mel-cepstrum.
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Fig. 2. Deriving an MFCC-equivalent from the auditory spectrum

Table 1. Approximate center frequencies (Hz) and bandwidths
(Hz) used for the filterbanks of the MFCC (implemented by HTK
software) and the MFCC-equivalent. Cochlear filterbanks de-
signed at the Institute for Systems Research at the University of
Maryland were used for the early auditory processing.

MFCC MFCC-e
fc 68 144 226 317 416 525 645 226 320 415 523 640 784
b/w 144 158 173 190 209 229 251 28 40 52 65 80 98
fc 777 921 1080 1254 1445 1655 1886 932 1077 1245 1438 1661 1865
b/w 276 303 333 365 401 440 483 117 136 157 183 212 238
fc 2139 2416 2721 3056 3423 3827 4270 2154 2418 2714 3047 3420 3839
b/w 531 583 640 702 771 846 929 278 313 354 400 453 513
fc 4756 5289 5875 6519 7225 4309 4699 5274 5920 6456
b/w 1020 1120 1229 1349 1481 584 645 738 848 944

neural processing in the early stages of the auditory system. Since
the widely-used MFCC is mostly based on a crude approximation
of the peripheral auditory system, most notably the cochlear filter-
ing action that affects human perception of pitch, the more accu-
rate early processing model essentially encompasses the computa-
tion stages of the MFCC. Specifically, the integration of spectral
energy via mel-scale filterbanks has much to do with the cochlear
filtering followed by the nonlinear stages used to obtain the au-
ditory spectrum, as illustrated in Figure 1. Hence, a crude coun-
terpart to the MFCC could be extracted from the auditory spec-
trum by selecting the output of those channels corresponding to
the MFCC’s critical-band filters and applying the Discrete Cosine
Transform on these sampled points, as shown in Figure 2. Note
that only a crude match of the center frequencies was done to
obtain the auditory spectrum channels, and the bandwidths differ
significantly, as shown in Table 1. To more accurately demon-
strate the relationship between the auditory model and the MFCC,
some of the spectral integration at the cortical stages would have
to be considered. Also note that cochlear channels corresponding
to three of the MFCC’s filterbanks are unavailable. Despite these
simplifications, this feature can be useful in quantitatively studying
the relationship between the MFCC and the physiological model
by applying it in the phoneme recognition task described in Sec-
tion 4. Further insights are provided in Section 5.

3. THE CORTICAL RESPONSE

3.1. The A1 Model

In the A1[1], the one-dimensional auditory spectrum is redun-
dantly encoded by a set of neurons, each neuron possessing a “re-
sponse area” that characterizes the amount of excitation induced
by spectral components along the tonotopic frequency axis. Each
response area is characterized by an excitatory range around the
neuron’s best frequency (BF) surrounded by inhibitory areas. The
response areas are organized in roughly three dimensions: BF,
bandwidth (scale), and symmetry (phase). The bandwidth dimen-
sion indicates the overall stretch of the neuron’s excitatory and
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Fig. 3. Analysis functions with fixed BF (dashed lines) and varying
scale and phase. Excitatory peaks are aligned to the BF’s.

inhibitory areas, while the symmetry indicates the difference in
inhibition above and below the BF.

In the original model[1], a seed analysis function hs(y) is de-
fined on the tonotopic axis y to simulate these response areas. A
sinusoidal interpolation between hs(y) and its Hilbert Transform
ĥs(y) models the varying symmetry, parameterized by φ. Al-
though this construction allows efficient computation of the cor-
tical response, it also has the effect of causing the peak of each
excitatory lobe to drift away from the BF as |φ| increases. Hence,
in our model we added a translation factor c(s, φ) to every analysis
function to compensate for this deviation and align the excitatory
peaks of all analysis functions to their BF’s. The resultant cortical
response becomes a more direct encoding of the local symmetry
around each point on the auditory spectrum, allowing easier in-
terpretation of visual plots. Mathematically, the analysis function
on the tonotopic domain y parameterized by x (best frequency), s
(scale), and φ (symmetry) can be written as:

w(y; x, s, φ) = hs (y − x + c(s, φ)) cos φ

+ ĥs (y − x + c(s, φ)) sin φ
(1)

The zero-scale correction factors c(0, φ) can be found by numeri-
cally solving the following equation:

dw′(y; 0, 0, φ)/dy = 0 (2)

for each φ where w′(y; x, s, φ) is the same as w(y; x, s, φ) but
without the alignment factor c(s, φ). We can then compute c(s, φ)
by dilating c(0, φ) as follows:

c(s, φ) = c(0, φ)/αs (3)

where α is the dilation factor in [1]. Two examples of the re-
sultant analysis functions are shown in Figure 3. Only the range
−π

2
< φ < π

2
is used for the symmetry axis in our model. The

cortical response is obtained by computing the inner product of
these functions with the auditory spectrum p(y).

r3(x, s, φ) =
∫
R

p(y)w(y; x, s, φ)dy (4)

An example of the auditory spectrum and its cortical response
is shown in Figure 4 for the vowel /aa/. Note that, compared to [1],
it is easier to visually track the change in symmetry as the local
spectral components at each tonotopic point are encoded from fine
scale to broad scale (e.g., along the line drawn at around 3 kHz)
due to our alignment of the best frequencies.

3.2. Feature Extraction

To experimentally corroborate the validity of the cortical response
as an auditory representation, we use two well-known dimension
reduction methods, Principle Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) [4], to derive feature vectors for
use in a phoneme recognition task.

Since the cortical response contains too much data for direct
application of PCA and LDA, we first apply a simple method of
data reduction by discarding regions that are found to have rela-
tively high variance for all phonemes. The reasoning here is that
the responses in these locations will be weakly correlated with the
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Fig. 4. The auditory spectrum and cortical response of the /aa/
vowel. Only the maximum cortical response along each φ-axis is
plotted using the color convention in [1]. Readers are asked to refer
to the website http://www.ece.gatech.edu/∼wjjeon
to view the plots in color.

identity of each phoneme. For example, in Figure 5 we can see
that the response for many different samples of the vowels /iy/ and
/uw/ has high variance at the upper left regions. As discussed in
[1], the responses in these regions are usually manifestations of
pitch, which, naturally, is highly variant and does not contribute
to discriminating between the actual identity of vowels. In the
same manner, we assume that cortical regions that have overall
high variance across all phoneme classes do not contribute much
in distinguishing between the phonemes, and discard such regions
from the cortical response. As a result, we can vastly reduce the
data to a more manageable size where PCA and LDA can be more
readily applied. In the case of LDA, we circumvented the rank-
deficiency of scatter matrices by reducing the data to an interme-
diate size by PCA before applying LDA[5].

4. EXPERIMENTAL VALIDATION

Recognition experiments were run using phonemes extracted from
the TIMIT database. From [6], we arbitrarily chose (for the sake of
simplicity) only one phoneme from each of the seven groups where
within-group confusions were not counted, and excluded the group
of closures, resulting in a total of 38 phonemes. 16 kHz samples
of phoneme utterances were taken from all “si” and “sx” sentences
in the TIMIT database, resulting in a total of 82,881 total training
phone samples and 30,335 testing samples. Clean data was used
for training, while Gaussian white noise was added to the test data
to vary the SNR. The auditory model response consisted of 128
channels on the tonotopic axis, 21 channels on the scale axis (with
a resolution of 4.7 channels per octave), and 11 channels on the
phase axis linearly spaced between −π/2 and π/2. Each raw fea-
ture consisted of 12 points, and frame-by-frame energies and delta
and acceleration coefficients were appended to form 39-point vec-
tors for the recognition task. The recognizer was a 5-state HMM
(3 emitting) implemented with HTK software. Table 2 shows the
recognition ratios achieved with increasing Gaussian mixtures per
state using the MFCC, the MFCC-equivalent (MFCC-e), rp de-
rived from the A1 response by PCA, and rd by LDA. The ro-
bustness of the physiological model toward noise[7] seems to con-
tribute significantly to its performance under low SNR, especially
when using rp. Note that the MFCC-e is only a very crude deriva-
tive of the auditory spectrum based on the computation of the
MFCC, with no added attempt to optimize it for the recognizer.
Moreover, the pitch-related harmonics of the signal are greatly ac-
centuated in the auditory spectrum[2], which would further harm
the MFCC-e’s robustness. The A1-derived features are also some-

Table 2. Phoneme recognition rates (%) for varying features,
SNR(dB, C=Clean), and number of mixtures per state.

MFCC MFCC-e rp rd

1 4 8 32 1 4 8 32 1 4 8 32 1 4 8 32
C 47.2 55.3 58.3 62.7 36.3 41.9 45.6 49.7 39.5 47.2 50.9 56.5 42.1 49.6 52.9 58.8
20 41.3 49.3 50.9 54.3 35.6 41.3 44.7 48.9 39.3 46.6 50.4 55.7 40.6 48.0 50.8 55.1
15 36.4 43.9 45.6 48.1 35.0 40.3 43.5 47.7 38.4 45.8 49.4 54.2 34.8 41.2 43.5 47.1
10 29.8 35.5 36.8 39.0 33.1 38.0 40.5 44.2 36.7 43.1 46.5 50.7 22.5 26.6 28.5 32.4
5 22.6 24.8 25.7 26.7 28.5 31.8 33.5 35.2 32.5 36.5 39.0 41.5 15.6 16.4 17.3 18.2

what arbitrary features used simply to quantitatively validate the
physiological model under conventional HMM-based recognition
framework. Extracting features to compete with the MFCC for
speech recognition is not the objective of this paper.

5. TOWARD A HIERARCHICAL AND
CATEGORY-BASED DETECTION FRAMEWORK

While we have focused on implementing and validating a model
of the peripheral and central auditory system in this study, a more
in-depth investigation of the dimension-expanded auditory repre-
sentation that it provides can lead us to new directions in using it
for perceptual and cognitive tasks.

An interesting starting point is to study the variance of the cor-
tical response to various phonemes. Figure 5 shows the variance
of the zero-phase response for several different phonemes. If we
consider the statistics of individual neurons only (without regard
to correlations among neighboring neurons), it is conceivable that
the identifying features of each phoneme lie in the light-shaded
low-variance regions, as was discussed in Section 3.2. Moreover,
one notices that many phonemes can be grouped together accord-
ing to the similarity of their low variance regions. In Figure 5,
for example, such a grouping can be found with several phonemes
categorized as vowels, fricatives, affricates, and plosives.

One possible implication of this phenomenon is that the cor-
tical response serves as a place-coded data set where phonemes
sharing common characteristics have a common “identifying re-
gion” where their differentiating features are most strongly present.
Hence, in order to detect the presence of a certain phoneme, one
must analyze the identifying region pertaining to its category. It
is already implied by many physiologists that the auditory system
is composed of specialized processing stations. For example, ev-
idence is shown in [8] that distinct regions of the brain process
syllables while others process phonemes. [9] states that the left
hemisphere of the brain may be specialized in processing acous-
tic transients. If we were to extend this notion of specialization
to the processing of speech phonemes, we may hypothesize that
the cortical response consists of distinct identifying regions that
are specific to certain categories of phonemes, from which we can
extract data to make cognitive decisions. Note that we need not
limit ourselves to speech signals, but other complex audio signals
in general. For example, different identifying regions may exist
for different categories of musical instruments.

Furthermore, many physiological studies imply that the func-
tions of the brain, including the auditory system, are organized
hierarchically. For example, [10] shows through functional mag-
netic resonance imaging (fMRI) that pure tones primarily activate
the core of the human auditory cortex, while complex sounds such
as narrow-band noise usually stimulate the belt areas, implying a
hierarchical process of sound being decomposed into basic fea-
tures and later integrated into more complex stimuli. This inspires
us to hypothesize that the cortical response may be an interme-
diate auditory representation from which higher-level processing
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(a) Variance of cortical response for the vowels /iy/ and /uw/
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(b) Variance of cortical response for the fricatives /dh/ and /z/
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(c) Variance of cortical response for the affricates /jh/ and /ch/
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(d) Variance of cortical response for the plosives /p/ and /k/
Fig. 5. Variance (dark=high) of cortical response at φ = 0.
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Fig. 6. Conceptual representation of MFCC filterbanks.

stations extract data to form cognitive decisions in multiple stages,
starting with a broad categorization of sound (e.g. vowels vs. con-
sonants or string vs. brass instruments) followed by more specific
cognitive decisions (e.g. vowel /aa/ vs. /iy/, trumpet vs. tuba).

This inspires us to develop new, hierarchical systems where
the presence of categories or classes of sound are measured and
detected at distinct levels of processing. We can also take full ad-
vantage of the place-coded cortical response by using category-
based identifying regions to make more accurate cognitive deci-
sions. Note that in our recognition task, we applied a single low-
variance region for the recognition of all phonemes, which com-
pletely ignored this category-based place-coding. Furthermore, by
reducing the data set into a 12-point vector, we have taken away the
dimension-expanded data redundancy that may be important for
robustness. In the case of the MFCC, the mel-scale filterbanks can
be conceptually represented on the zero-phase cortical plane by
finding neural response areas with corresponding BF’s and scales,
as shown in Figure 6. Although this is a very simplified one-to-
one correspondence, it conceptually demonstrates that the MFCC,
in some respect, represents only one small subset of the auditory
response. This implies the existence of other, more refined speech
features that are based on more relevant areas of the cortical re-
sponse. We also note that future studies should allow the model
to incorporate explicit processing of temporal information, which
plays an important role in the perception of pitch or timbre.

6. CONCLUSION

In this study, we implemented and studied a computational model
of the peripheral and central auditory system based on the work by
[1] and [2]. As a means of indirect validation of the model, we de-
rived a crude equivalent to the MFCC from the more accurate pe-
ripheral model and used this feature in a speech recognition task to
make a quantitative comparison. We also derived feature vectors
from the dimension-expanded A1 model using well-known pat-
tern recognition techniques and used them in a speech recognition
task to verify the model’s validity under conventional recognition
methodology. By studying physiological models, we have gained
some insights into human perceptual and cognitive processes and
new approaches to simulating them. In this study, features were
derived from the auditory model only to carry out experimental
validation. Category-distinct low variance regions of the cortical
model, in connection to existing physiological studies, suggest that
a hierarchical, category-based system of detecting perceptual and
cognitive cues may provide a more robust, elegant framework for
solving various auditory analysis problems in future studies.
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