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ABSTRACT

In this paper we introduce a discriminative feature analy-
sis method that seeks to minimize phoneme errors in lattice-
based training frameworks. This technique, referred to as Mini-
mum Phoneme Error Heteroscedastic Linear Discriminant Anal-
ysis (MPE-HLDA), is shown to be more robust than traditional
LDA methods in high dimensional spaces, and easy to incorpo-
rate with existing training procedures, such as HLDA-SAT and dis-
criminative training of Hidden Markov Models (HMMs). Results
on conversational telephone speech and broadcast news corpora
also show that the recognition accuracy is improved using features
selected by MPE-HLDA.

1. INTRODUCTION

In speech recognition systems, feature analysis is usually employed
for better classification accuracy and complexity control. In re-
cent years, extensions to the classical Linear Discriminant Analy-
sis (LDA) have been widely adopted. Among them, Heteroscedas-
tic Discriminant Analysis (HDA) [1] seeks to remove the equal
class variance constraint assumed by LDA. In addition, the au-
thors of [1] applied a Maximum Likelihood Linear Transformation
(MLLT) on top of LDA and HDA and improved accuracy. Maxi-
mum likelihood based Heteroscedastic Linear Discriminant Anal-
ysis (HLDA) [2, 3], generalizes LDA in another way by putting the
optimization of feature projections inside an ML parametric esti-
mation framework, taking the HMM structure (e.g. diagonal co-
variance Gaussian mixture state distributions) into consideration.

Despite the differences between the above techniques, they
have some common limitations. First, none of them assumes any
prior knowledge of confusable hypotheses, so their choices are de-
termined to be suboptimal for recognition. Second, their objec-
tive functions do not directly relate to the word error rate (WER),
which is often the performance measure of speech recognition sys-
tems. As a result, it is often unknown whether selected features
will do well in testing by just looking at the values of objective
functions. For example, we found that HLDA could select totally
non-discriminant features while improving its objective function
by mapping all training samples to a single point in space along
some dimensions.

Recent research showed that using discriminative criteria like
Maximum Mutual Information (MMI) [4] and Minimum Phoneme
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Error (MPE) [5] in optimizing Gaussian parameters improved recog-
nition accuracy significantly. Inspired by this work, we developed
a feature analysis approach based on the MPE criterion, MPE-
HLDA, for better recognition accuracy. In addition, since this cri-
terion is closely related to WER, MPE-HLDA tends to be more
robust than other projection methods, which makes it potentially
better suited for a wider variety of features.

Under the MPE criterion, we could perform EM updates of
feature projections and Gaussian parameters jointly [6], however,
this would tie projections closely with discriminatively placed Gaus-
sians. Instead, we would like the optimization to concentrate on
finding better features by running the optimization of feature pro-
jections as a standalone process. By doing this we can have more
flexibility in using the resulting projections. For instance, we could
perform regular ML training with them and still preserve the gains
from MPE-HLDA. We have also been able to obtain improvements
from MPE-HLDA on top of HLDA-SAT training [7], as we will
see in a later section of this paper.

More details of MPE-HLDA will be covered in sections 2 and
3. In section 4, the system configuration of our experiments on
conversational telephone speech (CTS) and broadcast news (BN)
corpora is described. The results are then compared and analyzed
in section 5. Finally the paper ends with conclusions and sugges-
tions for future research.

2. MPE OBJECTIVE FUNCTION AND DERIVATIVE

If we define A,«n as a global feature projection matrix that lin-
early maps n-dimensional original features to p-dimensional ones,
where p < n, then Gaussian parameters and features in the p-
dimensional space can be written as

Crn = diag(AS,A") )
00 = Ao (3)

where p,, and ¥, are the mean and full covariance ofAGaussian
m in the original feature space. We will refer to A = (C, fim),
the model in reduced feature space, as the MPE-HLDA model.

MPE-HLDA aims at minimizing expected number of phoneme
errors introduced by the MPE-HLDA model in a given hypothesis
lattice, or equivalently maximizing the function

R
Fupp(0,0) =3 Y Pa(wr [ On) e(wr) &)

where R is the total number of training utterances, O, is the se-
quence of p-dimensional observation vectors in utterance r, and
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e(wy) is the “raw accuracy” score of word hypothesis w, as de-
fined in [5]. Px(w, | O,) is the posterior probability of hypothesis
w, in the lattice, computed as follows

Py (Or | w)* P(w,)
Yy, PA(Or | w})eP(w})

where P(w,) is the language model probability of hypothesis w,
and k& is an exponent applied to the acoustic scores in order to
reduce their dynamic range, thereby avoiding the concentration of
all posterior mass in the top-1 hypothesis of the lattice.

Note that P (O, | w,) is the regular HMM observation prob-
ability of the projected features O given the lattice hypothesis w,,
computed based on the MPE-HLDA model A.

It can be shown that the derivative of (4) with respect to A is

Pi(w, | Oy) = &)

3FMPE O A) 310g PA(qu | gr, M)
PursON) iy 5 i 28D
(6)
where
D(gr,7) = Pr(gr | Og,, A) [€'(ar) — @/ (r)] @

a/(r) is the MPE score of utterance 7 and €'(g-) is the average
accuracy over all hypotheses that contain arc g,.. It has been shown
in [5] that both €’(gr) and o/ (r) can be computed efficiently via
forward-backward passes over error-marked lattices.

Within arc q,, we also have

Olog PA(OqT | gr,A) 8log Py(6¢ | m, A)

0A Z Z Yar 0A

t=S4, m

(®)
where Sg, and E,,. are the begin and end time of arc g, respec-
tively, and ~;" () denotes the posterior probability of Gaussian m
in arc g, at time ¢.

Finally, the derivative of log Gaussian likelihood with respect
to A in (8) is
8log P/\(at | m, )\)

=0t (C‘,;lptm - 1,,) AS,, — O R™

9A
©)

where
P" = diag [(at—ﬂm)(at—ﬂm)T] (10)
R = (6t — fim)(0t — pm)” (11)

and I, denotes the p X p identity matrix. Therefore, Eq. (6) can
be rewritten as

M =k ! (62 Gm 1) AB — kT
(12)
where
EQ'I‘
(m = ZZD @rsr) Y Yarlt (13)
t= S‘l’r‘
E‘l’l‘
Gm = ZZD ¢r,1) Y ()P (14)
t= SQT
EQT
J = Y G D D) Y e (ORD (15
m s qr t:SQr

3. MPE-HLDA IMPLEMENTATION

Calculation of the original space statistics, pym, and X,,, is done
by running a forward-backward pass over the training data using
a model trained with ML in the reduced feature space provided
by the initial estimate of A. The gaussian posterior probabilities
computed in the backward pass are used to accumulate sufficient
statistics for p,, and X,, in the original feature space. This tech-
nique is usually referred to as “single pass retraining”. To limit the
amount of memory required during accumulation, the entire pro-
cess is divided into a number of smaller jobs, each accumulating
statistics for a subset of the Gaussians.

In theory, the derivative of the MPE-HLDA objective function
can be computed based on Eq. (12), via a single forward-backward
pass over the training lattices. In practice, however, it is not pos-
sible to fit all the full covariance matrices X, in memory, since
most of the state of the art HMMs use a large number of Gaus-
sians. One could try to access the original space statistics from the
secondary storage during the forward-backward training, but this
would severely reduce the efficiency of the process.

Instead, we compute the derivative in two steps. First, we run
a forward-backward pass over the training lattices to accumulate
{m, Gm and J, and then have another step that uses these statistics
together with the full covariance matrices X,, to synthesize the
derivative.

Based on the consideration of flexibility discussed in section 1,
we used gradient descent in updating the projection matrix, instead
of doing EM updates of all model parameters. Though commonly
thought to be inefficient, in practice we found that the gradient
descent optimization usually converges in less than 20 iterations.

Once we have optimized the MPE-HLDA model, we can use it
for a second retraining pass, to update p,, and X, . This step is es-
pecially useful if the initial projection and ML model are far from
the optimal configuration. The result is an iterative optimization
procedure, as follows:

1. Initialize feature projection matrix A by LDA or HLDA,
and MPE-HLDA model M © by Gaussian splitting.

2. Seti + 1.

3. Compute covariance statistics 2% in the original feature
space:

(a) Do maximum likelihood update of MPE-HL.DA model
M=) in the feature space defined by A",

(b) Do single pass retraining using ME=D o generate
,u,(qﬁ) and 25,? in the original feature space.

4. Optimize the feature projection matrix:
(a) Setj 0, A% « AG-D.,

(b) Project p, %) using AJ@ to get model ./\;t](’) in
reduced subspace.

(c) Run forward-backward pass on lattices using ./\;[51)
to compute {pm, Gm and J.

(d) Use 25,?, Aj(.i) and statistics from 4c to compute the
MPE objective function and its derivative.

(e) Update Ay) to AJ(-?_I using gradient descent.

(f) Setj < j + 1, goto 4b unless convergence or maxi-
mum number of iterations is reached.
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5. Optionally, set A® A](-Ql, MD /\;i](-i,)l, 141+1
and go to 3 to repeat.

It should be noted that pre-computing and storing pm and 3.,
in the above procedure could be very expensive both in terms of
computation and storage when the dimensionality of the features in
the original space is very high. Fortunately, there is a way to rear-
range the terms in Eq. (12) such that they do not rely on sufficient
statistics of the original space, leading to a “memory efficient” im-
plementation of MPE-HLDA. This implementation, however, re-
quires additional forward-backward passes over the training data
in each iteration of MPE-HLDA in order to accumulate sufficient
statistics of the reduced space for the derivative calculation.

4. EXPERIMENTAL SETUP

‘We ran experiments on both Conversational Telephone Speech (CTS)
and Broadcast News (BN) corpora, as part of the DARPA EARS
research project [8]. For CTS, we have approximately 2300 hours
of training data, of which 800 hours were used for training the ini-
tial ML model M and the remaining were treated as held-out
training data for lattice generation and discriminative training. For
MPE-HLDA, only 370 hours of the held-out data were used, in or-
der to reduce training time. Similarly for BN, we used 600 hours
of data from Hub4 and TDT corpora for training the initial model
M© and 330 hours of held-out data for MPE-HLDA estimation.

Experiments were performed both with and without HLDA-
SAT. With HLDA-SAT, a CMLLR-based adaptation was performed
first on 15-dimensional (14 cepstral coefficients and normalized
energy) Perceptual Linear Predictive (PLP) coefficients, resulting
in adapted cepstra with smaller within-class variances, which served
as input to MPE-HLDA. Besides the cepstral difference, HLDA-
SAT is totally transparent to MPE-HLDA.

Our first experiments used cepstra and their first, second and
third derivatives as input feature vectors for HLDA. Recent re-
search, however, suggested that there is more useful information
in longer contexts (concatenated frames), especially for the CTS
corpus. To reduce the computational cost, we adopted a “two-
level projection” approach. Given dimensionality of concatenated
features £ and target dimensionality p, we first estimate a projec-
tion matrix Lyx¢ on the first level and keep it fixed throughout
the MPE-HLDA optimization. On the second level, we use MPE-
HLDA to update the projection matrix Apx, using the procedure
described in sections 2 and 3. In usage, A - L forms the global
feature projection. £ is determined by the number of frames to
concatenate. p and m are chosen based on experience, typically
p = 60 and n = 130 or 190 in our experiments.

For acoustic modeling, State Cluster Tied Mixtures (SCTM)
were used. The SCTM model uses two levels of state tying; at the
first level, states are tied based on a decision tree to share Gaussian
parameters, while at the second level states share mixture weights
for a particular Gaussian cluster (codebook). Each MPE-HLDA
model contained only 12 components for each codebook cluster,
much smaller than in regular systems, and it was used only for
estimating the feature projection. The initial model was trained
based on the ML criterion with labeled data and an initial feature
projection, which was formed by a first-level LDA projection and
a second-level HLDA projection.

Lattices were generated on held-out training data, and marked
with trigram language model scores and arc accuracy scores [5].

Iteration MPE-HLDA model | Final ML model
tr. WER | Eval03 Eval03

0 (HLDA) 30.5 30.6 25.9

1 (MPE-HLDA) 29.6 29.3 25.6

2 (MPE-HLDA) 29.0 28.8 254

Table 1. CTS unadapted 15-frame MPE-HLDA compared to base-
line ML HLDA.

The idea of using held-out data and a strong language model is to
approximate the testing scenario as much as possible.

5. RESULTS

5.1. CTS Results

On the CTS corpus, we ran both unadapted and adapted exper-
iments with frame concatenated PLP cepstra. We measured the
performance of MPE-HLDA on the EARS 2003 Evaluation test
set (Eval03), and in some cases on the 2004 Development test set
(Dev04).

In the unadapted experiments, we used non-crossword state
clusters for acoustic modeling, LDA for the first-level projection
L, and HLDA for the second-level initial projection Ag. We con-
catenated 15 frames, hence ¢ = 225, and we chose n = 130 and
p = 60 as input and output dimensionality. Two main iterations
of joint optimization of the matrix and covariance statistics were
performed, using the procedure outlined in section 3.

The effect of MPE-HLDA on recognition accuracy is shown in
Table 1, where we can see significant WER reductions with the 12
Gaussian-per-state (12GPS) MPE-HLDA model after each main
iteration of the optimization process. In particular, there is a 1.5%
absolute gain on the training data with respect to the baseline ML
HLDA model, and a 1.8% absolute gain on the Eval03 test set.
Note, however, that our standard ML HLDA unadapted model con-
tains about 6 times as many Gaussians as the 12GPS MPE-HLDA
model, so it is more interesting to look at the effect of MPE-HLDA
on the large ML training. This is shown at the rightmost column of
Table 1, where we can see that the overall gain from MPE-HLDA
is reduced to 0.5% absolute.

One might argue that the gain on the 12GPS MPE-HLDA
model does not come from better features, but from tuning the
model to fit the MPE criterion. To answer this question, we per-
formed two groups of tests using the optimized model and pro-
jection from iteration 1. In the first test, we took the optimized
MPE-HLDA model from the first iteration of Table 1, and up-
dated the Gaussian parameters with regular ML training. If the
optimized feature projection had not selected better features at all,
there should have been apparent degradations after ML updating,
however, it turned out that the degradation was insignificant (Ta-
ble 2). In the second test, we took both the initial and first iteration
MPE-HLDA models, and updated their Gaussians under the MPE
criterion. The results showed that even after MPE training of the
Gaussian parameters there is a 0.7% absolute gain due to MPE-
HLDA (Table 3).

As an alternative initial projection Ao, we also tried a a 60 x
130 MLLT matrix®. It turned out that it had as good performance

2First a 60 x 60 MLLT transform was estimated in the projected space
defined by the first level LDA, then it was padded with zeros to make a
60 x 130 projection.

I-927



[ ML Iter. | Eval03 WER |

0 29.3
7 29.4

Table 2. ML updating of optimized MPE-HLDA model (Model 1
of Table 1).

[ Model [ Eval03 WER |
0 (HLDA) 25.8
1 (MPE-HLDA) 25.1

Table 3. MPE updating of initial and optimized MPE-HLDA mod-
els (Model 0 and 1 of Table 1).

as HLDA but was less expensive to run, so we adopted it as the
initialization method in later experiments.

Given the gains from MPE-HLDA, we then used it in conjunc-
tion with HLDA-SAT for estimating the global speaker indepen-
dent feature projection. For best performance, crossword models
were used in MPE-HLDA. After the optimal projection was found,
we plugged it into HLDA-SAT to build a full system and decoded
both Eval03 and Dev04. Table 4 shows the WERs during MPE-
HLDA training and on testing. The results verified the improved
performance due to MPE-HLDA.

Iteration MPE-HLDA model | ML SAT model
tr. WER test WER

0 (LDA+MLLT) 26.1 17.3

1 (MPE-HLDA) 253 16.9

Table 4. Effect of MPE-HLDA on adapted CTS ML SAT models.
Test WER measured on the Eval03+Dev04 set.

5.2. BN results

Table 5 shows the WERSs on training data and on h4d04 test data.
The configuration of MPE-HLDA experiments was the same as
with the adapted experiments on CTS, except that we also experi-
mented with increased number of frames to concatenate.

We see two interesting results from the experiments. First,
the MPE-HLDA is more robust than LDA+MLLT when the di-
mensionality increases. As the number of frames went from 9
to 23, LDA+MLLT performance progressively degraded, while
MPE-HLDA recovered the loss even from the bad LDA+MLLT
initial point. Second, we chose to use 15 and 23 frames in doing
MPE-HLDA because previous experiments at BBN showed that
features from 9 frames gained little over features from base cep-
stra and deltas. On the BN corpus, however, results show that the
use of more than 9 frames does not provide any further benefit.
This leads us to believe that the nature of this corpus is different
from that of CTS. It is unclear what is the exact reason, but we
know that there are more silences and music between the speech
in the BN data, so that longer concatenation windows may suffer
from including more irrelevant features.

6. CONCLUSIONS

In this paper we have taken a first look at a new feature analy-
sis method, MPE-HLDA. Its application to both unadapted and

[ Frames | Projection | n [ tr. WER | h4d04 WER |

9 LDA+MLLT - 12.7 12.8
9 MPE-HLDA | 135 12.7 12.7
15 LDA+MLLT | 130 12.7 12.9
15 MPE-HLDA | 130 12.2 12.7
23 LDA+MLLT | 190 13.1 13.2
23 MPE-HLDA | 190 12.1 12.7

Table 5. Effect of MPE-HLDA on adapted BN ML SAT models.

speaker-adapted training shows that it is effective in reducing recog-
nition errors, and that it is more robust than other commonly used
analysis methods like LDA and HLDA.

We believe that MPE-HLDA can be improved further. In fu-
ture work, we are planning to explore other input features besides
cepstra, and to use multiple projections and more efficient model-
ing in the original feature space.
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