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ABSTRACT

One serious difficulty in the deployment of wideband speech recog-
nition systems for new tasks is the expense in both time and cost
of obtaining sufficient training data. A more economical approach
is to collect telephone speech and then restrict the application to
operate at the telephone bandwidth. However, this generally re-
sults in sub-optimal performance. In this paper, we propose a
new algorithm for training wideband acoustic models that requires
only a small amount of wideband speech augmented by a larger
amount of narrowband speech. The algorithm operates by first
converting the narrowband features to wideband features through
a process called Feature Bandwidth Extension. The bandwidth-
extended features are then combined with available wideband data
to train the acoustic models using a modified version of the con-
ventional forward-backward algorithm. Experiments performed
using wideband speech and telephone speech demonstrate that the
proposed mixed-bandwidth training algorithm results in signifi-
cant improvements in recognition accuracy over conventional train-
ing strategies when the amount of wideband data is limited.

1. INTRODUCTION

One serious difficulty in the deployment of automatic speech recog-
nition (ASR) systems for new tasks is the expense of obtaining suf-
ficient training data. This is especially true for applications which
process wideband speech, e.g. desktop applications. The cost and
time required for data collection can be mitigated by collecting
speech over the telephone. Recording speech over the telephone is
a relatively economical and efficient way to collect large amounts
of data from a wide variety of geographic regions. However, col-
lecting speech data in this manner has the drawback that the speech
used to train the recognizer will be narrowband, typically sampled
at 8 kHz with a bandwidth of 300-3400 Hz. This means that dur-
ing decoding, the test speech must be restricted to the same band-
width. However, all other things being equal, recognition systems
that process narrowband speech perform worse than those that pro-
cess wideband speech, i.e. speech sampled 16 kHz with a band-
width of 0-8000 Hz [1]. Therefore, the performance obtained by
restricting the bandwidth of the speech recognition system to that
of telephone speech is sub-optimal.

Thus, when creating a new wideband speech recognition ap-
plication, there are two options for collecting training data. The
first is to collect enough wideband speech to adequately train the
recognizer. This option is expensive in both time and cost, but
yields the best performance. The second is to collect training data

over the telephone and then restrict the bandwidth of the wideband
test speech to match that of the telephone speech. This option
is more cost-effective but results in sub-optimal recognition accu-
racy.

In this paper, we propose an alternative approach in which
wideband acoustic models are trained using a small sample of
wideband speech and a large sample of narrowband speech. In
this approach, the narrowband speech features are first converted to
wideband features using a process we call Feature Bandwidth Ex-
tension (FBE). These bandwidth-extended features are then pooled
with features derived from available wideband speech and used to
train the acoustic models using a modified version of the conven-
tional forward-backward algorithm. We demonstrate that combin-
ing bandwidth-extended features together with wideband features
in this manner produces acoustic models that outperform those
trained on either the limited wideband speech or the abundant nar-
rowband speech in isolation.

The method proposed in this paper is related to previous re-
search in training mixture models from incomplete data [2]. How-
ever, this work is not directly applicable to speech recognition ap-
plications because of the idiosyncrasies of the computation of mel-
frequency cepstral coefficients. Missing data techniques have also
been used to improve the robustness of ASR systems to additive
noise for decoding, e.g. [3].

The remainder of the paper is organized as follows. In Sec-
tion 2, the feature extraction process for speech recognition is briefly
reviewed and the missing data paradigm for mixed-bandwidth speech
is introduced. In Section 3, we describe the proposed method for
performing HMM training from mixed-bandwidth training data
using FBE. Section 4 describes experiments that show the valid-
ity of the proposed method. Finally, we summarize this work and
present some conclusions in Section 5.

2. FEATURE EXTRACTION FOR ASR

In this work, we assume that mel-frequency cepstral coefficients
(MFCC) are the features used for recognition. We define xi as the
log mel spectrum of the ith frame of speech. For wideband speech,
the log mel spectrum represents the energy in the mel filterbank,
a series of overlapping frequency regions which range from ap-
proximately 100 Hz to 8 kHz. This log mel spectral vector is then
converted to a cepstral vector zi via a discrete-cosine transform
(DCT) as

zi = Cxi, (1)
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where C is the DCT matrix. Dimensionality reduction is also usu-
ally performed, so the DCT matrix C is M × L with M ≤ L.

We assume that the narrowband speech has been upsampled
to match the sampling rate of the wideband speech. If this speech
is then transformed to a sequence of log mel spectral vectors, the
components derived from mel filters that cover frequencies outside
the original signal bandwidth will contain no information. We re-
fer to these components as missing. In contrast, the components of
the spectral vector that do contain reliable content are considered
observed. Thus, a log mel spectral vector x can be partitioned as

x = [xo,T xm,T ]T (2)

where xo contains all components of x that are observed and xm

contains all components that are missing. For narrowband speech,
the observed and missing subvectors roughly correspond to the low
and high frequency components, respectively. However, for tele-
phone speech, the lowest mel components typically fall outside
the telephone passband and are therefore considered missing as
well. For wideband speech originally sampled at the target sam-
pling rate, xo = x and xm = [ ].

Substituting (2) into (1), we can express the cepstral vector z
as the sum of linear transformations of xo and xm as

z = Cx = [CoCm]

[
xo

xm

]
= Coxo + Cmxm = zo + zm (3)

where C has been partitioned into Co, an M × Lo matrix, where
Lo is the length of xo and Cm, an M × Lm matrix, where Lm is
the length of xm.

3. HMM TRAINING VIA FEATURE BANDWIDTH
EXTENSION

The proposed method of HMM training using mixed-bandwidth
speech data consists of two two stages. In the first stage, the band-
width of the narrowband features is extended using a priori knowl-
edge obtained from available wideband speech data. In the second
stage, the wideband speech features and the bandwidth-extended
features are used to train the HMMs. We now describe each of
these two stages in more detail.

3.1. Bandwidth extension of narrowband speech features

In Feature Bandwidth Extension (FBE), we wish to infer the wide-
band cepstral vector zi given the observed narrowband log mel
spectral vector xo

i . The minimum mean squared error (MMSE)
estimate of zi can be expressed as

ẑi = E[zo
i + zm|xo

i ] = Coxo
i + CmE[xm|xo

i ] (4)

where E[·] represents the expectation operatior.
In order to compute the expected value in (4), we utilize a

prior model of wideband speech. We assume that wideband speech
can be effectively modeled as a Gaussian Mixture Model (GMM).
This GMM is trained in the log mel spectral domain from available
wideband speech data using conventional EM. Thus, we have a
distribution of wideband speech of the form

p(x) =
K∑

k=1

p(x|k)p(k) =

K∑
k=1

N (x; µk,Σk)p(k) (5)

where µk and Σk and p(k) are the mean vector, covariance matrix
and prior probability of the kth Gaussian, respectively, and K is
the total number of Gaussians in the mixture.

Using a GMM, the expected value in (4) can be rewritten as

E[xm|xo
i ] =

K∑
k=1

∫
xmp(xm, k|xo

i)dx
m (6)

=

K∑
k=1

p(k|xo
i)

∫
xmp(xm|xo

i , k)dxm (7)

where p(k|xo
i) is the posterior probability of the kth Gaussian

based only on the observed components of the feature vector. Com-
puting the expected value in (7) requires the marginal and condi-
tional probability density functions (PDFs) associated with p(x|k).
Specifically, we need to factorize p(x|k) as

p(x|k) = p(xo,xm|k) = p(xo|k)p(xm|xo, k). (8)

To do so, we first sort the means and covariances into observed
and missing partitions as

µk =

[
µo

k

µm
k

]
, Σk =

[
Σoo

k Σmo
k

Σom
k Σmm

k

]
. (9)

Using (9), we can now express the marginal distribution as

p(xo|k) = N (xo; µo
k,Σoo

k ) (10)

where µo
k and Σoo

k are the mean and covariance of the observed
components only. The conditional distribution can be expressed as

p(xm|xo, k) = N (xm; µ
m|o
k ,Σ

m|o
k ) (11)

where µ
m|o
k and Σ

m|o
k are the conditional mean and covariance,

respectively, computed as

µ
m|o
k = µm

k + Σmo
k Σoo,−1

k (xo − µo
k) (12)

Σ
m|o
k = Σmm

k − Σmo
k Σoo,−1

k Σom
k (13)

Substituting (12) and (7) into (4) leads to the following solu-
tion for the MMSE estimate of zi given the narrowband observa-
tion xo

i

ẑi = Coxo
i + Cm

(
K∑

k=1

p(k|xo
i)µ

m|o
k

)
. (14)

where the posterior probability p(k|xo
i) in (14) can be computed

from (10) using Bayes rule.

3.2. HMM Training using bandwidth-extended features

Performing FBE on every frame of narrowband speech in the train-
ing set generates a sequence of bandwidth-extended feature vec-
tors which we can now pool with the available wideband data
and use to train the recognizer in the conventional manner. How-
ever, using the bandwidth-extended features without any changes
to the training procedure implicitly makes the assumption that the
MMSE estimates generated by FBE are error-free. Because the
features have been inferred from narrowband data, they may in
fact be erroneous. Therefore, intuitively, we should not trust the
bandwidth-extended speech data as much as the actual wideband
speech data. To reflect this “mistrust,” we assign a weighting factor
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to the posterior probability of each frame of bandwidth-extended
speech when the Gaussian parameter updates are computed. More
explicitly, for each frame i of bandwidth-extended speech, the pos-
terior probability of being in Gaussian q of state k is modified as

γ̂ikq = αγikq, 0 ≤ α ≤ 1 (15)

where γikq is the state-posterior probability computed from the E-
step of the conventional forward-backward algorithm [4]. Thus,
the updated mean vector for the qth Gaussian of state k is com-
puted as

νkq =

∑Nw

i=1 γikqzi +
∑Nb

j=1 γ̂jkqẑj∑Nw

i=1 γikq +
∑Nb

j=1 γ̂jkq

(16)

where Nw is the total number of wideband frames, indexed by i,
and Nb is the total number of bandwidth-extended frames, indexed
by j. The Gaussian prior probabilities and covariance matrices are
updated in a similar manner. Weighting the posterior probabilities
in this manner is equivalent to MAP parameter estimation [5]. We
discuss how to choose the value of α in the next section.

4. EXPERIMENTAL EVALUATION

In order to evaluate the proposed mixed-bandwidth training algo-
rithm, we performed a series of experiments using the TIMIT cor-
pus [6]. TIMIT is a phonetically labeled corpus of hand-designed
utterances used to evaluate phonetic recognition accuracy. TIMIT
was chosen because it was originally recorded as wideband speech
with a sampling rate of 16 kHz and was later transmitted over the
telephone network and released as the narrowband NTIMIT (Net-
work TIMIT) corpus [7]. The useful bandwidth of the NTIMIT
corpus is approximately 300-3400 Hz. By using these two paral-
lel corpora, we can perform controlled experiments which explore
the combination of wideband and narrowband speech, where the
bandwidth of the data is the only variable.

The phonetic dictionary used for these experiments was iden-
tical to that used by Lee and Hon in their TIMIT baseline experi-
ments [8]. The HTK speech recognition system was used to train
3-state context-dependent triphone models with 16 Gaussians per
state. The feature vectors used for recognition were 13-dimensional
cepstra derived from 40-dimensional log mel spectra, along with
their delta and acceleration parameters. Frames were 25 ms with a
10 ms shift between successive frames. Cepstral mean normaliza-
tion was performed prior to processing. A phonetic-bigram lan-
guage model was used for decoding, with a language weight of
8.0. Performance was measured using the TIMIT core test set. A
50-speaker set of utterances not present in either the training or test
sets was used as a development set for intermediate experiments.

In the first series of experiments, we evaluated the recognition
performance when different amounts of wideband speech were
used for training. The complete training set consists of approxi-
mately 3.1 hours of speech. Subsets of the training set, ranging
from 1% up to 90% of the total training set were selected at ran-
dom, and used to train the recognizer. Figure 1 shows the phonetic
accuracy as a function of amount of data used to train the recog-
nizer. Not surprisingly, the plot shows that the performance of the
system degrades significantly with fewer training data.

We will now attempt to improve the performance when only
limited wideband training data is available. In these experiments,
we assume that only 10% of the wideband data is available, which
corresponds to 0.3 hours of speech. The remaining 90% (2.8 hours)
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Fig. 1. Phone accuracy of the TIMIT core test set versus the
amount of data used to train the recognizer. The leftmost data
point represents 1% of the total training set (0.03 hrs) while the
rightmost datapoint represents the full of the training set (3.1 hrs)

of the training data is taken from NTIMIT. In telephone speech
that is upsampled to 16 kHz, the first 4 and last 13 components
of the 40-dimensional log mel spectral vectors are outside of the
telephone passband and therefore unobserved.

In order to perform FBE, a GMM of 256 densities was trained
using the available 0.3 hours of wideband training data. Using this
GMM, FBE was performed on the NTIMIT training vectors. In
order to mitigate the spectral tilt induced by the telephone channel,
mean normalization was performed on both the wideband log mel
spectra used to train the GMM and the narrowband NTIMIT log
mel spectra prior to FBE.

The 2.8 hours of bandwidth-extended cepstra from NTIMIT
were then pooled with the 0.3 hours of wideband cepstra and used
to train the recognizer. Multiple acoustic models were trained us-
ing a range of values between 0 and 1 for the weighting parameter
α in (15). Note that setting α = 0 is equivalent to using only the
wideband data, while setting α = 1 results in conventional HMM
training. In order to determine the optimal value, the performance
of each of the models was evaluated using the development set.
Figure 2 shows the results of this experiment.

As the figure shows, optimum performance is obtained when
α = 0.2. We can also see that setting α greater than 0.8 results
in performance that is worse than that obtained from the wideband
data alone. Thus, the bandwidth-extended data is useful in training
wideband acoustic models, but it clearly cannot be considered as
useful as wideband data that is well matched to the test conditions.

Based on these results, we evaluated the performance of mixed-
bandwidth training on the TIMIT core test set using acoustic mod-
els training with α = 0.2. The results obtained are shown in
Table 1. In this table, we compare the performance obtained us-
ing various training strategies possible when wideband training
data is limited. The first row shows the accuracy obtained when
telephone speech is used to train narrowband acoustic models,
and the test data is downsampled and filtered to match the tele-
phone speech characteristics. To improve the performance, we
augmented the telephone speech with some telephonized wide-
band speech to match the test data. The second row shows the
performance obtained when the telephone data is ignored and only
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Fig. 2. Phone accuracy of the TIMIT development set versus the
value of α used during mixed-bandwidth HMM training.

a limited amount of wideband data is used to train the system. The
models are well matched to the test data but undertrained. The
next two rows show the performance obtained when both the wide-
band and telephone speech are used for training using the proposed
mixed-bandwidth training strategy. In the second case, after train-
ing was complete, supervised MLLR adaptation was performed
using the limited wideband training data a second time [9]. Fi-
nally, the last row shows the performance obtained when the full
wideband training set is used. This represents the upper bound on
the phone recognition accuracy for the core test set.

The accuracy obtained by using limited wideband training data
is 64.0%, while the accuracy of a fully trained wideband system
is 73.1%. By augmenting the limited wideband speech data with
bandwidth-extended telephone speech and using the proposed mixed-
bandwidth training algorithm, we have narrowed the gap in perfor-
mance between these two systems by 17.6% without using model
adaptation and by 23.1% with adaptation. We note that no addi-
tional data was used for adaptation, just the same 0.3h of wideband
data that was used in training. As these experiments show, the pro-
posed mixed-bandwidth training algorithm results in a significant
improvement over conventional training methods when the amount
of wideband speech available for training is limited.

5. CONCLUSION

In this paper, we have proposed a two-stage method for training
acoustic models for HMM-based speech recognition systems us-
ing mixed-bandwidth training data. In the first stage, wideband
features are estimated from narrowband features using a process
called Feature Bandwidth Extension (FBE). Then, the bandwidth-
extended features are combined with available wideband speech
data to train the acoustic models using a modified version of the
forward-backward algorithm.

Through a series of experiments, we demonstrated that the
proposed method is able to significantly improve speech recog-
nition performance compared to systems trained solely on either
narrowband data or a limited amount of wideband data. Using
the proposed two-stage mixed-bandwidth training algorithm, we
were able to reduce the difference in performance between a sys-
tem trained from only limited wideband data and a fully trained
wideband system by 23.1%.

Training Data Phone
Accuracy (%)

2.8h NTIMIT + 0.3h TIMIT-TB 62.3
0.3h TIMIT-WB 64.0
2.8h NTIMIT-BWE + 0.3h TIMIT-WB 65.6
2.8h NTIMIT-BWE + 0.3h TIMIT-WB, 66.1
+ MLLR using TIMIT-WB
3.1h TIMIT-WB 73.1

Table 1. The phone accuracy on the TIMIT core test under various
training scenarios. TIMIT-WB is the original wideband TIMIT
speech. TIMIT-TB is the TIMIT speech filtered to the telephone
bandwidth, NTIMIT-FBE is NTIMIT with FBE applied.

We believe the performance of mixed-bandwidth training can
be improved by explicitly incorporating a measure of the uncer-
tainty of the bandwidth extension process into the training algo-
rithm. For example, the variances associated with the MMSE es-
timates generated by FBE could be used to discount or deweight
highly uncertain feature vectors in the parameter update formulas.
In addition, we believe further improvement can be obtained by in-
creasing the robustness of FBE to channel distortion and additive
noise, both common in telephone speech.
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