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ABSTRACT 

Acoustic analyses of speech signals are popular in the 

framework of the clinical evaluation of voice and diagnose of 

disease. We propose a new strategy for dysphonic speech 

analysis that extracts vocal dysperiocities by using a generalized 

form of the variogram. The generalized variogram allows to 

overcome the inherent drawbacks of both long-term and short-

term linear prediction formulations widely used in disordered 

speech analysis. The proposed approach uses a forgetting factor 

to account for the nonstationarity nature of the speech signal. 

Experimental results show that the proposed approach 

outperforms the double prediction-based technique. 

1.   INTRODUCTION 

Acoustic analyses of speech signals are popular in the 

framework of the clinical evaluation of voice because the 

analysis is noninvasive and documents quantitatively the degree 

of hoarseness perceived by the clinician. One acoustic marker of 

hoarseness is the so-called signal-to-noise ratio (SNR) [1]. 

Several diseases result in a decreasing energy of the harmonic 

structure of the spectrum in detriment of that of the nonharmonic  

structure.  In the context of the assessment of disordered speech, 

noise refers to dysperiodicities that are detected in the speech 

waveform, including additive noise owing to turbulence and 

modulation noise owing to perturbations of the glottal excitation 

signal caused by a malfunction of the vocal folds [2, 3]. Speech 

signal may contain an unvaluable information on the degree of 

hoarseness. Although there are various medical conditions that 

can affect the voice, most of the disorders originate from the 

vocal system and frequently result in an increase in the 

dysperiodicity of voiced speech sounds  providing a motivation 

to quantify the amount of this dysperiodicity by estimating the 

SNR. 

Most approaches for dysphonic speech analysis are based 

on the periodicity of the vocal folds vibration [4, 5]. Even these 

methods have been successfully applied to sustained vowels, 

they exhibit a lack of robustness and accuracy when they are 

applied  to the estimation of vocal noise in continuous speech or 

vowels including onsets and offsets. Indeed, these techniques 

require a stationary portion of the speech signal either for the 

mathematical model to be valid or for an accurate measurement 

of the acoustic parameters of the analyzed speech signal. Up to 

date, there is comparatively a small number of studies conducted 

on continuous speech [6, 7, 8]. This is due primarily to the 

difficulty in continuous dysphonic speech to isolate the 

individual speech cycles and the individual harmonics which 

gives rise to a biased acoustic marker of vocal noise. In [7], the 

authors  attempted  to avoid this drawback by using a double 

prediction-based method where two analysis stages have been 

used in cascade. The first stage is composed of a conventional 

linear prediction modeling refereed to as short-term linear 

prediction. The aim of the linear prediction modeling is to 

remove the near-sample waveform redundancies by estimating 

the current speech  sample value as a linear combination of the 

past values. The second stage performs a long-term predictive 

modeling on the signal residue obtained at the output of the first 

stage.  

Combining short-term and long-term predictive models 

does not, however, always yield SNR values that correlate 

perfectly with the perceived degree of hoarseness or measured 

speech dysperiodicity for several reasons. One reason is that the 

short-term linear prediction is segment-dependent and speaker-

dependent [9]. A second reason is that by cascading short-term 

and long-term predictive models, only the residue contributes in 

the estimation the dysperiodicity via the analysis performed by 

the second stage with the weighted sum being discarded 

resulting in an estimate of the signal dysperiodicity that is 

different from the actual one present in the overall signal.    

Moreover, by inspecting the long-term prediction modeling, one 

can see that the estimation may lead to an inconsistency with the 

initial assumption of the periodicity since there is no constraint 

imposed to the prediction coefficients.   This article proposes a 

new strategy for dysperiodicity estimation based on a 

generalized form of the variogram frequently used within the 

geostatistical community. Due to its ability to estimate the 

dysperiodicities, the generalized variogram allows to overcome 

the drawbacks of both long-term and short-term linear prediction 

formulations. The paper is organized as follows. In section 2, the 

long-term linear predictive model is introduced. In section 3, the 

generalized variogram-based approach is presented. Results 

based on both synthetic and real speech signals are presented in 

section 4. Finally, to conclude, remarks are given in section 5. 

2.   LONG-TERM LINEAR PREDICTION ANALYSIS 

Long-term linear prediction was originally introduced in the 

framework of speech coding. To remove the far-sample 

redundancies, a long-term analysis was applied to the prediction 

error resulted from the conventional short-term linear prediction 

analysis of the speech signal [10]. Due to cycle-to-cycle 

prediction, the long-term predictive model allows to isolate and 

quantify dissimilarities between neighboring cycles. Let x(n) be 

a stationary discrete-time zero-mean signal. The long term 

predictor of x(n) may be expressed as 
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where m 1 is the order of the model; ai, i = 0, . . m-1, are the

parameters to be computed; and T is the prediction distance that

is related to the vocal cycle length in the case of voiced speech

sound. The order m is typically equal to 3. The motivation for 

involving more than one speech sample in the prediction is that 

the actual cycle length does not necessarily agree with an integer

number of sampling steps. The coefficients of the model are 

calculated by minimizing the mean square error. The choice of 

the optimum value of the lag T was addressed in [10] where an

exhaustive search for the optimal lag that minimizes the mean

square prediction error as well as a less computationally

expensive method were proposed.

Even the long-term linear predictive analysis seems to be 

attractive for quantifying speech signal dysperiodicity, it may 

result in an inconsistency with the assumption of the pseudo-

periodicity of the signal. Indeed, without loss of generality, if we 

consider a first-order linear predictive model, solving (1) can

lead to                because the weighting parameter is not

guaranteed to be positive.

3.   VARIOGRAM-BASED SIGNAL DYSPERIODICITY

ESTIMATION

3.1.  Variogram

The variogram is extensively used in geostatistical data

processing. In the stationary case, it is closely related to the

autocovariance function. In [11], the variogram has been

extended  to nonstationary time series analysis. The variogram is

defined as 

For an accurate estimation of the variogram, a large number of 

realizations of the process is required. However, in practical 

situations, N samples from only one realization are available.

Given a mean-stationary process, the following biased variogram

estimator can be used

It is worth noting that the variogram is very similar to the

average magnitude difference function (AMDF) used in speech

processing community, but the latter uses an absolute value.

Periodic signals are characterized as having a variogram 

which is zero at lags located at the period T0 or at multiple of it

and, therefore, the period may be calculated as the first lag for

which the variogram is zero. This is due to the fact that if a

signal is periodic, the present cycle can be perfectly estimated by

means of the previous cycles. A slight perturbation  of the

periodic signal is interpreted as a dysperidicity which causes a 

small increase in the value of the variogram at lag h= T0.

Conversely, if the periodic signal is noise-corrupted, the minimal

value of the variogram provides an estimate of the perturbation

power whereas the lag associated to that minimum value may be

considered as an estimate of the period of the periodic part.

Thus, the variogram may be considered as a cue of the amount of

the dysperiodicity (noise) present in the signal and then a SNR

can be defined. However, voiced speech signals are known to be 

pseudo-periodic. To account for this property, some modification

must be introduced in the original definition of the variogram.
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3.2.   Dysperiodicity Estimation by Means of the Generalized

Variogram

In a typical situation of a periodic signal x(n) of period T0, we ca

write x(n) = x(n+T0). Altering the signal by some random 

perturbation (noise) results in some dysperiodicity. The measure

of the “distance from the periodicity” provides a good indication 

on the amount of the perturbation. Thus, a reasonable estimate of

the dysperiodicity power may be

(4).0
2 )n(

However, voiced speech signals are pseudo-periodic in nature

and characterized by smooth changes in amplitude. As an 

extension of the definition of the periodicity, a signal is

considered pseudo-periodic if for some T0

x(n+T0) = ax(n)  (5) 

where the weighting coefficient was introduced to account for

amplitude changes in the speech signal. By referring to (2) and

(3), and taking into account the property of pseudo-periodicity of

the speech signal, the generalized variogram and its biased

estimator may be defined, respectively, as

Since the primer concern is the analysis of speech signals, the

lag h is closely related to the pitch. It takes all values ranging

between the minimal and the maximal fundamental periods, so

that the range of the summation in the variogram estimate given

by (7) may be adapted to account for this particularity. Indeed, if

the range of summation is taken as is, the variogram estimate

will be highly variable at higher lags due to the fewer number of

lag-terms averaged. At small lags, the poorer of the variogram

results from considering the fundamental frequency as

unchanged on a large interval by keeping the lag constant on the 

overall interval which is not the case in natural speech signals.

One way to avoid this problem is to take the same range in the

summation for all lags. The interval must be sufficiently large to

capture the dissimilarities between two neighboring cycles and

sufficiently short so that the fundamental frequency can be 

considered constant during the analysis cycle. It has been found

that an interval of 2.5 ms of length is a good choice. To take into

account the nonstationarity feature of the speech signal, a

forgetting factor is introduced [12]. The gain factor a is assumed

to be time-dependent leading to the following expression of the

generalized variogram and its estimate

where L is the summation range expressed in number of samples.

For (5) to be a valid definition of the pseudo-periodicity, the
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weight a must be  positive. It may be interpreted as a gain factor 

and a reasonable choice would be

where

The role of the forgetting factor is to weight differently the

samples. More contribution is attributed to the  recent samples

than the past samples. However, the forgetting factor must be

less but close the unity. It fixes the effective length of the

window used to calculate the gain factor. A small value of the

forgetting factor may result in a short effective window whereas 

a value close to 1 gives rise to a long effective window. In this 

study, it was chosen to be  = 0.98 which corresponds to an

effective length of 2.5 ms at the sampling frequency fs=20 kHz.

By introducing the forgetting factor, the powers E(n) and Eh(n)

may be expressed recursively as follows

The instantaneous value of the dysperiodicity for that frame is 

estimated as 

The cue used as an indication on the degree of hoarseness is the 

SNR expressed as

where  is an estimate of the clean signal given by

The generalized variogram must be computed in forward and 

backward directions. The aim of this bi-directional analysis is to

remove clinically spurious errors that occur at the beginning of

the record interval and at boundaries between the phonetic 

segments in continuous speech. It is indeed not possible to 

estimate distant speech samples across phonetic boundaries

because the cycle shape depends on the phonetic identity of each

segment. Bi-directional analysis entails that speech samples are

either estimated or retro-estimated depending on which direction 

gives rise to the smallest variogram value. Estimation across

boundaries is thus avoided and the observed error is likely to be

caused by vocal perturbations rather than the evolving identity of

the speech segments. Combining forward and backward

variogram estimates is equivalent to vary h from –Tmax to –Tmin

and from Tmin to Tmax, where Tmin and Tmax are the minimal and

maximal fundamental periods in number of samples. The 

numerical values of Tmin and Tmax are 50 and 400, respectively.

The algorithm is summarized as follows

1. Initialisation

(10)
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2.  For each time instant n=0, . . ., N-1,
n
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2
 Find the optimal lag

 Compute the instantaneous error e(n)

3.   Compute the signal-to-noise ratio.

4.   EXPERIMENTAL RESULTS

4.1.  Data 

The proposed approach has been tested on synthetic signals as

well as on natural speech. Synthetic signals are very useful in

judging the quality of the results and evaluating the performance

of any method through  some identification criteria. The artificial 

signals used in the test are the synthetic vowels [a] (with onset

and offset) with various forms of dyperiodicities. To

approximate the real analysis conditions, the sampling frequency

has been chosen to be 20 kHz, the fundamental frequency has 

been chosen f0=120 Hz and a signal of 1 s of length has been 

analysed. Three sources of dysperiodicity have been considered

in generating the waveforms that deviate from the perfect 

periodicity [2, 3]: i) additive noise, ii) dysperiodicity due to the

variation in the period from cycle to cycle (jitter) and iii)

dysperiodicity due to the variation in the amplitude from cycle to

cycle (shimmer). For the additive noise, the SNR was varied 

from 8 dB to 40 dB. The amount of jitter lies between 0.1 % and 

1 %, i.e., from normal to pathological case. The amount of 

shimmer ranges from 1 % to 10 %. For natural speech, the 

corpus, taken from the database in [13], is a subset of the signals 

corresponding to the French sentence “il est sorti avant le jour”

uttered by a female speaker. The sampling frequency has been

44.1 kHz. The signals are labeled in an increasing order of

hoarseness  as “modal”, “rough 1”, “rough 2”, “rough 3” and 

“whisper”.

a)-(111 2

4.2.  Results

Figure 1 depicts the results for the synthetic vowel [a] with the 

onset and offset. As can be seen, the double-prediction-based

approach results in a saturation region beyond 20 dB. The actual

and the  variogram-based estimate SNRs are highly correlated.

The superiority of the performance of the variogram-based

approach appears clearly in the case of signals with jitter and

shimmer. Conducted simulations have shown that the SNR 

values obtained by using the double prediction-based approach

are noncorrelated with the amounts of jitter and shimmer. Figure 

2 shows the estimate SNR versus the amount of jitter for the

variogram-based approach. The variogram-based approach 

provides a highly correlated estimate SNR values with the

amount of jitter. This is confirmed by Spearman’s rank

correlation coefficient  which is equal to -0.95. Figure 3 displays

the estimate SNR versus the amount of shimmer. As shown, the

estimate SNR is linearly decreasing as the amount of shimmer

increases.

The SNR values of the different signals of continuous

speech corpus are given in Table 1. The estimated SNR using the
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generalized variogram are in good agreement with the quality of

voice. Indeed, the signal labeled modal which corresponds to a 

normal speaker is characterized by a high SNR and that labeled

whisper which corresponds to a highly dysphonic speaker is

characterized by a small SNR. The double prediction-based

approach provides a slightly higher SNR estimate for the signal

labeled “Whisper” than for the signal labeled “rough3” resulting

in an incorrect rank.

Fig. 1. Estimate SNR versus Actual SNR for the

  synthetic vowel [a] with onset and offset.

  Fig. 2. Estimate SNR versus the amount of jitter

in the synthetic wowel [a] with onset and offset.

  Fig. 3. Estimate SNR versus the amount of shimmer

  in the synthetic wowel [a] with onset and offset.

Table 1. SNR estimate of continuous speech signals using

double  prediction-based approach and generalized variogram.

5.   CONCLUSION

This paper presents a new strategy for estimating the

dyperiodicities  in disordered speech. By using synthetic and

natural speech signals, it has been shown that the proposed 

approach outperforms the double prediction-based technique.

What makes this approach attractive is its ability to estimate the

amount of dysperiodicity in the signal independently of its

temporal or spectral structure as the conventional techniques do. 

The variogram-based approach requires an exhaustive search in

the interval of the permissible values to get an estimate of the

optimal lag. However, it is possible to reduce the computational

cost either by calculating an approximate value of the optimal

lag or by performing a coarse search to get an approximate value 

of the optimal lag followed by a fine search in the neighbouring

of the approximate value to find a more accurate optimal lag.
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