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ABSTRACT

We present a novel approach to estimating the first two for-
mants (F1 and F2) of a speech signal using graphical models. Us-
ing a graph that takes advantage of less commonly used features of
Bayesian networks, both v-structures and soft evidence, the model
presented here shows that it can learn to perform reasonably with-
out large amounts of training data, even with minimal processing
on the initial signal. It far outperforms a factorial HMM using the
same assumptions and suggests that with further refinement the
model may produce high quality formant tracks.

1. INTRODUCTION

Formants, the resonant frequencies of the vocal track during voiced
speech, are widely believed to be useful features for both automatic
speech recognition and speech synthesis [1]. Additionally, projects
such as the UW Vocal Joystick, a new research effort at the Uni-
versity of Washington, are exploring the use of formants for 1-D
and 2-D continuous motion control. The Vocal Joystick project is
creating a new vocal interface to allow people, especially individ-
uals with motor impairments, to use many aspects of their voice to
easily interact with computers or other devices.

Formant tracking is a difficult problem for which there have
been many proposed solutions. Many, such as [2], use LPC spec-
tral analysis to estimate potential formant frequencies. As frame-
based estimates relying on LPC tend to be noisy, post-processing
is typically applied, often either continuity constraints through dy-
namic programming (DP) or template matching. There have also
been other types of formant trackers such as HMM-based meth-
ods [3], approaches using nonlinear predictors [4], and a recent
one using a Kalman filtering framework [5], to name a few. It
should be noted that the last two actually aim to model the vo-
cal track resonant frequencies more generally, that is during both
voiced and unvoiced speech segments.

This paper presents a novel graphical model for use with for-
mant tracking, inspired by the model in [6]. The goal of this project
is to use data to learn a formant tracker, including both candidate
estimation and continuity constraints, and to do so using a rela-
tively simple model. Additionally, because of the nature of the
graphical model framework, the method will be able to learn pa-
rameters for any set of provided features and with any additional
constraints provided. This allows it to quickly adjust to customized
tasks for which typical assumptions no longer hold; for instance,
the Vocal Joystick project will allow formants to change arbitrar-
ily, possibly violating typical assumptions about the rate of change
in natural speech. Specifically, post processing based on dynamic
programming, a widely used technique, relies on evaluating both
a local cost function and a transition cost function [7]. Finding
appropriate functions to use becomes a crucial part of successfully
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Fig. 1. V-structure sequence model training graph

applying DP, but there can be many parameters to tune. By em-
ploying statistical models, we can learn the best values of those
parameters, in a maximum likelihood sense, for any task.

While graphical models have been used before in formant track-
ing, there are several differences between those approaches and the
one presented here. The HMM-based method of [3] uses a graph-
ical model only to decide from among a set of pre-selected can-
didates and to learn continuity constraints. The Kalman filtering-
based method of [5] is complex but with quite good results. By
contrast, the graphs presented here exploit several useful proper-
ties of Bayesian networks, namely v-structures and the use of vir-
tual or soft evidence [10, 8], unused by most other approaches. In
doing so, we present a clear and elegant way of simplifying the
statistical model.

2. GRAPHICAL MODEL STRUCTURE

2.1. The Training Graph

The power of graphical models comes from their ability to model
families of probability distributions in a quick, concise, and eas-
ily understood manner. This paper uses a new model for training
as shown in Figure 1, and ultimately compares the results of this
graph with those of a factorial HMM (FHMM) [9]. Shaded nodes
represent nodes observed during training and unshaded nodes rep-
resent hidden variables.

The most obvious difference between this graph and its de-
coding counterpart presented in the next subsection and a facto-
rial HMM is its use of v-structures instead of directly linking con-
secutive states. Typical HMMs have no v-structures [10]; facto-
rial HMMs do include them by using separate state nodes in the
same frame as parents of observations. Our new graphs, in addi-
tion to the v-structures formed by the state and observation nodes,
also include them between states in adjacent frames. In this way,
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the graphs approximate factorization possibilities in an undirected
graphical model while remaining a Bayesian network.

The random variables QF1
t and QF2

t are the formant frequency
states for F1 and F2 and time frame t. Each variable has cardi-
nality N which represents N − 1 possible frequencies plus an un-
voiced state which is given index N . Neither variable has parents,
but each has its own prior distribution: πF1

q and πF2
q .

Every time frame except frame 1 has a pair of hidden ran-
dom variables, DF1

t and DF2
t with cardinality K, corresponding

to the difference between adjacent formant states. Although there
are a total of N2 possible transitions between any pair of formants
(QFn

t−1, Q
Fn
t ), n ∈ {1, 2}, using these difference nodes quantizes

those transitions to only K values; this provides only very rough
quantization (we use Fn alone to refer to both F1 and F2). Ad-
ditionally, this difference node is represented by a deterministic
relationship given its parents, meaning it is calculated with a sim-
ple lookup table. The nodes for a given formant share the same
table, but a separate table is used for each formant. Each table
splits the (N × N)-sized transition table into K disjoint subsets
Sk, k = 1..K where P (DFn

t = k|QFn
t−1 = i, QFn

t = j) = 1 iff
(i, j) ∈ Sk. Both tables use the mapping:

S1 = {(i, j) : i = N, j �= N}
S2 = {(i, j) : i �= N, j = N} (1)

Sk = {(i, j) : mk ≤ j − i < Mk}; k = 3..K.

S1 and S2 represent (resp.) unvoiced-to-voiced and voiced-to-
unvoiced transitions. The quantities mk and Mk are (resp.) the
minimum and maximum index for the kth subset, where each of
the subsets are evenly spaced at integers between −N + 2 and
N − 2 inclusive. These subsets form equivalence classes based
on the difference between adjacent formant frequencies (so only
formant transitions and not absolute frequency values are used).
The unvoiced-to-unvoiced transition maps into the same subset as
a voice transition with i = j. Note that the choice of parameters
used in this mapping can constrain formant changes per frame, in
contrast to allowing free variation as presented in the introduction.

This mapping disregards absolute formant values in favor of
the relative change in value. In doing so, it compresses what would
otherwise be a much larger table into one that is small enough
to be learned even with limited amounts of training data. Also,
when later applied to decoding, the information from the priors
πF1

q and πF2
q along with observations will constrain the formant

values sufficiently well that the transition table can be compressed
with little or no detrimental impact.

The observed children of QF1
t and QF2

t are primarily contin-
uous observation vectors Oq

t , with the exception of a binary voic-
ing indicator Vt (an observation obtained using voicing estimates
generated independent of this model; see Section 3.2 for specific
details). There are also difference observations, Od

t as children of
both DF1

t and DF2
t . All features come from signal processing on

the audio signal and will be discussed further in subsection 2.3.

The graph of Figure 1 should effectively capture the relation-
ships between both the vocal tract resonances (in voiced speech)
and the acoustics, as needed for formant tracking. Note that QF1

t

and QF2
t are not independent due to the observations. This graph

could be represented as a factorial HMM (or even a non-factorial
HMM) where DFn

t , QFn
t−1 and QFn

t are grouped into a single large
node, but it would have very high cardinality and would conse-
quently require much more data to train effectively.

Fig. 2. V-structure sequence model decoding graph

2.2. The Decoding Graph

Figure 2 shows the graph used for decoding. It differs from the
training graph in that the formant frequency states are now hidden.
There is also an additional observed child W F1

t for each DFn
t

node with a constant value of 1. This allows the use of virtual or
soft evidence for DFn

t , denoted by the conditional probability

πFn
d (k) � P (W Fn

t = 1|DFn
t ), (2)

which is in practice set equal to the normalized histogram of the K
formant transition patterns. This allows us to capture a prior dis-
tribution over each difference node DFn

t , something which would
be difficult to accomplish without the use of soft evidence. The
normalization is not actually necessary for inference and decod-
ing; πFn

d could be scaled by any nonnegative value and the results
would be unchanged. Note that QFn

t−1 is not independent of QFn
t

due to the use of soft evidence.
2.3. Observation Features
As with many tasks, selecting appropriate observation features is
crucial. In this case, variations on coefficients of the power spec-
trum computed from linear prediction coefficients were used as
features for Oq

t directly (see also [6]). Two variations were tried:
the logarithm of the power spectrum, and the logarithm of the
power spectrum after it has been normalized to sum to 1.

Formants are likely to be at or near the peaks of the power
spectrum for any time frame. Consequently, if a frequency value
is near the peak, it is more likely to be a formant than one that
is not. With this in mind, we define observation vector Oq

t =
(Oq

1,t, O
q
2,t, ..., O

q
N−1,t) where Oq

i,t, i = 1..N − 1 is the power

spectrum associated with the ith frequency bin. Using this nota-
tion, we define an “improper” probability distribution for the ob-
servations as follows:

P (Oq
t = xt|QF1

t = i, QF2
t = j) (3)

=

8<
:

0, i > j
1, i = j = N
N (xi,t; µi, γ

2
1) · N (xj,t; µj , γ

2
2), i, j = 1..N − 1

while voicing is used to enforce constraints on the formants:

P (Vt|QF1
t = i, QF2

t = j) =

j
1, i ≤ j < N, Vt voiced
0, i, j �= N, Vt unvoiced

(4)
Note that some combinations are made impossible (given zero

probability), for instance F1 being at a higher frequency than F2.

I - 914

➡ ➡



Also, via Eq. 4, when the signal is voiced, the model forces QFn
t

to take values in {1, ..., N − 1}; when unvoiced the variables are
forced to assume value N . In the unvoiced case, the score value
is fixed at 1 (effectively turning off these observations). Thus, by
forcing the model into state N during unvoiced regions, we only
use Gaussian scores when tracking formants.

Different fixed means were used for the Gaussians depending
on the observation features used. For the log of the power spec-
trum, the mean for the ith frequency was set to the maximum value
seen at that frequency in the training set, implying a different mean
for each observation node. By contrast, for the log of the normal-
ized power spectrum the mean was 0, the maximum possible value,
for all frequencies. In both cases, a single covariance was trained
and used for all Gaussians while holding these means fixed.

By fixing the mean of the Gaussians at the maximum value
from the training data for each observation in the unnormalized
case and the maximum possible value in the normalized case, we
use only the lower half of the distribution. Due to the Gaussian’s
monotonicity in its lower half, frequencies with larger feature val-
ues are considered more likely to be formants than those with
lower values. In the unnormalized case, a one-sided distribution
would be preferable, otherwise we cannot ensure that a larger fea-
ture value is indeed treated as more likely. Using a Gaussian,
though, we can calculate a variance to determine how fast the func-
tion should fall off. Since the maximum possible value in the un-
normalized case is not known, even allowing the use of another
improper distribution, a reasonable and trainable method for de-
termining the shape of a one-sided distribution is not obvious.

Finally, in this initial work, we gave Od
t probability 1 for all

parent values, effectively removing it from the graph. This had the
benefit of leading to a better decoding algorithm by allowing for
an efficient triangulation.

3. EXPERIMENTAL FRAMEWORK AND RESULTS

3.1. Structure
The training and testing sets for this formant tracker were derived
from two databases. The first is “Mocha-TIMIT,” developed at
Queen Margaret University College, and the other was originally
created at the Hong Kong University of Science and Technology
for tone-estimation research. Both databases consist of read En-
glish speech and include laryngograph data.

For each waveform, Entropic’s get f0 [11] was used to extract
pitch and voicing information from the laryngograph waveforms.
Similarly, formant was used to obtain formant frequencies and
bandwidths. These values were then fed into an updated version
of the Klatt synthesizer [12], a formant-based speech synthesizer.
In doing so, we obtained accurate formant labels despite lacking a
hand-labeled corpus.

The training set comprised 1200 utterances, 300 from each of
two male and two female speakers. The testing set used the same
four speakers and amounted to 639 utterances. Equal numbers of
utterances were used from each speaker in both sets.

The Graphical Model Toolkit [13] (GMTK), was used to im-
plement the models for these experiments. The proposed model
was compared to a FHMM, which used a 1st-order Markov chain
between formant states rather than the v-structures of the proposed
model. The FHMM used an identical improper distribution for the
observation features.

3.2. Implementation Details
Observation features were generated using a custom front end. The
input waveforms were sampled at 16kHz, from which 40ms frames
were created, spaced 10ms apart. Light center clipping was ap-
plied to remove background noise. A 10th order LPC filter was

Formant F1
Features log PSD log norm. PSD

ESPS
Model FHMM New FHMM New
GER 87.38% 78.32% 55.30% 50.33% 21.99%
Mean 71.72 -52.23 -116.36 -59.88 3.08

L1-norm 292.97 142.68 124.55 103.25 74.99

Formant F2
Features log PSD log norm. PSD

ESPS
Model FHMM New FHMM New
GER 88.67% 31.12% 96.14% 30.94% 32.74%
Mean 362.93 -21.65 -19.45 123.20 285.90

L1-norm 1320.13 317.62 1228.36 317.06 424.70

Formant Overall
Features log PSD log norm. PSD

ESPS
Model FHMM New FHMM New
GER 98.96% 84.57% 98.53% 64.83% 45.19%

Table 1. Gross error rates (GER, >20% difference) for F1, F2,
and overall (frames with at least one error) for both sets of fea-
tures. ESPS results are provided as a baseline. Also given where
applicable are the mean error or bias in Hz and the zero-centered
L1-norm in Hz.

used and the power spectrum calculated at 128 frequency points
in the range 0Hz-4000Hz, a little wider than the range in which
the first two formants exist. Those values became the observation
features Oq

t . Adding an unvoiced state gave each node QFn
t a

cardinality of 129, and a frequency resolution of about 31Hz. The
frequency transitions were quantized into 129 bins, although fewer
could have been used with equal effectiveness or a more complex
mapping used, as most bins were empty.

Formant frequency priors, πF1
q and πF2

q , were smoothed be-
cause of the small size of the training set. By quantizing the transi-
tions we are able to only lightly smooth the transition “priors” πF1

d

and πF2
d . The FHMM used the same smoothed formant frequency

priors as the new model. Its transition probabilities suffered from a
lack of data, so we also used SRILM [14] to train a standard ARPA
backoff bi-gram “language model” as the conditional probability
table within GMTK.

In this paper, the goal was to train a formant tracker not to
train a model for making a voicing decision. Consequently, ora-
cle voicing information was used in both training and testing so as
to avoid errors from an incorrect voicing decision and more effec-
tively evaluate this model’s formant tracking ability. This model
could, of course, use the results of any voicing decision model.

3.3. Results

Results of running this model with each set of features appear in
Table 3.2, with results from ESPS’s formant included as a baseline.

The best results for the new model are nearly 2% better than
ESPS’s on an absolute scale for F2 tracking, a significant improve-
ment. The new model always outperforms the factorial HMM
when measuring error rate. In one case the FHMM has a lower
mean, but its norm is vastly larger; this simply means the many
large errors are more evenly distributed between being too high
and too low. It should be noted that the FHMM results are for
the unsmoothed transition probabilities as the bi-gram model gave
slightly worse results which are not presented here. The new model
also outperforms ESPS on F2 with both sets of features, although
by a smaller margin with the unnormalized features. The normal-
ized features are better for the new model, and slightly better over-
all for the FHMM even though it had a worse F2 result using them.

Also, the new model’s average error magnitude, measured via
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Fig. 3. Spectrogram with overlaid formants

the zero-centered L1-norm,
P

voiced frames
|Fntrue−Fndecoded|
count(voiced frames)

,
is substantially smaller than those of the FHMM in all cases. When
it beats ESPS, the new model also has lower bias and average error
magnitude values; that is not the case when ESPS performs better.

ESPS’s result is superior to that of either model overall, largely
because of its much superior F1 results. There are several possible
reasons for this which will be addressed in the final section.

Figure 3 shows a spectrogram of one of the synthesized speech
signals with formants overlaid. F2 is not typically right on, but of-
ten appears to be moving in the right direction compared to the
formant. The learned transition probabilities seem too constrain-
ing as it generally moves more slowly than the actual formant and
occasionally decides that not moving is best. The FHMM, how-
ever, is way off the mark. For F1, both the HMM and new model
appear to be confused by the fundamental frequency and to decide
that deviating from there is too expensive.

We also ran preliminary experiments lower-bounding F1 by
pitch (oracle information). Only F1 was affected by this change.
There was a small improvement in error rate for the unnormalized
features, and no change for the normalized features. A closer look
at the results revealed that for the unnormalized features, predicted
F1 dropped below pitch at some point in two-thirds of utterances
by a female speaker and never for male speakers. By contrast,
using the normalized features this happened only on about one-
quarter of the utterances by female speakers, and for a shorter av-
erage duration than when using unnormalized features.

4. DISCUSSION

The results for the new model are quite encouraging. Minimal
signal processing was performed on the input speech waveforms
before calculating power spectra, and the model was able to learn
reasonable F2 behavior. Tracking F1 is still something of a chal-
lenge, though. One reason, as is more apparent from the spectro-
gram, is that the models, both the new one and the FHMM, are
confusing the fundamental frequency with F1. Using the spectrum
from an LPC filter means that that pitch’s effects may bleed into
adjacent frequencies, so simply constraining F1 by pitch is not a
guaranteed solution.

Another potential problem is that F1 tends to vary around a
smaller range than does F2. By calculating the power spectrum at
only 128 points, the resolution in the lower parts of the spectrum
may be insufficient for tracking the first formant. Increasing the
resolution is an option, but it would increase the cardinality of the
graph which could be problematic. Instead, we could use a log-
arithmic frequency scale, concentrating more resolution at lower
frequencies. This may have detrimental side-effects on tracking

F2, though. We are currently experimenting with this variation.
Additionally, many formant trackers use other knowledge of

formants to help select candidates whereas this system uses only
the frequency. Specifically, formant bandwidths are commonly
used to screen out potential candidates since true formants are
fairly concentrated in frequency. To extend this further, it may be
necessary to pre-select some set of possible candidates and then
use the graphical model to evaluate those options.

Despite these challenges, to be addressed by future work, the
new model quite clearly holds much promise. Its strongly superior
performance versus the factorial HMM demonstrates that it is able
to learn a useful model from a very limited amount of training data
and suggests it will play a useful role in the Vocal Joystick project..

The authors would like to thank Chris Bartels and Gang Ji for
much help with GMTK.

5. REFERENCES

[1] X.Huang, A.Acero, and H.-W.Hon, Spoken Language Pro-
cessing, Prentice Hall PTR, 2001.

[2] K.Xia and C.Espy-Wilson, “A new strategy of formant track-
ing based on dynamic programming,” in Proc. Int. Conf. on
Spoken Language Processing, 2000.

[3] A.Acero, “Formant analysis and synthesis using hidden
markov models,” in Proc. Eur. Conf. Speech Communica-
tion Technology, 1999.

[4] L.Deng, I.Bazzi, and A.Acero, “Tracking vocal track reso-
nances usign an analytical nonlinear predictor and a target-
guided temporal constraint,” in Proc. Eur. Conf. Speech
Communication Technology, 2003.

[5] L.Deng, L.Lee, H.Attias, and A. Acero, “A structured speech
model with continuous hidden dynamics and prediction-
residual training for tracking vocal track resonances,” in
IEEE ICASSP, 2004.

[6] X.Li, J.Malkin, and J.Bilmes, “Graphical model approach
to pitch tracking,” in Proc. Int. Conf. on Spoken Language
Processing, 2004.

[7] H.Ney, “Dynamic programming algorithm for optimal esti-
mation of speech parameter contours,” IEEE Trans. on Sys-
tems, Man and Cybernetics, vol. SMC-13, no. 3, pp. 208–
214, 1983.

[8] J.Bilmes, “On soft evidence in bayesian networks,” Tech.
Rep. UWEETR-2004-0016, U. Washington Dept. of Electri-
cal Engineering, 2004.

[9] Z.Ghahramani and M.Jordan, “Factorial hidden markov
models,” Machine Learning, vol. 29, pp. 245–275, 1997.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference, Morgan Kaufmann, 2nd print-
ing edition, 1988.

[11] D.Talkin, “A robust algorithm for pitch tracking (RAPT),” in
Speech Coding and Synthesis, W.B.Kleign and K.K.Paliwal,
Eds., Amsterdam, 1995, pp. 495–515, Elsevier Science.

[12] D.Klatt, “Software for a cascade/parallel formant synthe-
sizer,” Journal of the Acoustical Soceity of America, vol. 67,
pp. 971–995, 1980.

[13] J.Bilmes and G.Zweig, “The Graphical Models Toolkit: An
open source software system for speech and time-series pro-
cessing,” in IEEE ICASSP, 2002.

[14] A.Stolcke, “SRILM – an extensible language modeling
toolkit,” in Proc. Int. Conf. on Spoken Language Process-
ing, 2002, vol. 2, pp. 901–904.

I - 916

➡ ➠


