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ABSTRACT

Using the human auditory system as a guide we propose a
signal processing strategy for decomposing composite sig-
nals into bandpass signal components and extracting their
features. We use two parallel filterbanks, one composed of
a set of wideband overlapping filters and another consist-
ing of a set of narrowband filters. The filterbanks cooper-
ate to isolate regions of persistent and transient signal activ-
ity. The narrowband filters help identify spectral regions
containing significant signal energy and groups of wide-
band filters in those regions are then optimally combined to
isolate and track each of the bandpass signal components.
Each group of wideband filters are combined to track one
bandpass component while suppressing all other neighbor-
ing components. Narrowband filters in cascade with nonlin-
earities are used to characterize the transient components.

1. INTRODUCTION

The biggest barrier to widespread use of automatic speech
recognition (ASR) systems in real-life situations is their un-
reliable performance in background noise and interference.
In marked contrast to current artificial systems, human lis-
teners are able to correctly identify speech utterances in
many acoustically challenging contexts. We believe that
critical examination of the auditory system and human au-
ditory perception, with a focus on physiologically plausi-
ble signal processing mechanisms that is well grounded in
the mathematics of signal processing, can lead to discov-
ery of new functional principles of signal representation and
processing that can improve ASR. Our overall goal is to
develop a new robust signal processing front-end that will
become part of many speech applications such as speech
recognition in noisy environments.

Virtually every speech-recognition system that engineers
have built uses framewise feature vectors derived from short-
term spectral envelopes computed by spectral analysis or by
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using a bank of fixed bandpass filters. When speech is de-
graded by noise, interference, and channel effects (such as
telephone speech, reverberation etc.,) perturbations at one
frequency affect the entire feature vector. Also, frame-based
processing reduces temporal acuity. This type of framewise
spectral envelope extraction is entirely at odds with how the
auditory system processes and recognizes speech. In the au-
ditory system, sound components are spectrally and tempo-
rally separated to the extent possible, analyzed and subse-
quently fused into unified objects, streams and voices that
exhibit perceptual attributes, such as pitch, timbre, loud-
ness, and location.

2. SOME CLUES FROM THE AUDITORY SYSTEM

An understanding of the neural representation of complex
sounds in early stages of auditory processing is critical for
identifying the functional principles of its operation that are
responsible for its high performance. After passing through
the middle ear, the signals are bandpass filtered and com-
pressed by the cochlea. For each place on the cochlear par-
tition, both active or adaptive (outer hair cells) and passive
processes (basilar membrane and inner hair cells) act to fil-
ter the signals. At low sound pressure levels (up to 40-50 dB
SPL), cochlear filtering is dominated by an active, sharply
tuned nonlinear process that seems to amplify frequency
components near the resonant frequency. At higher levels,
cochlear filtering is characterized by quasi-linear bandpass
filters that are broadly tuned and asymmetric. Mechano-
electrical transduction in roughly 3000 inner hair cells half-
wave rectifies the signals. Each inner hair cell is innervated
by 10-12 auditory nerve fibers (ANFs). As a consequence
of these processes ANFs show responses that are narrowly
tuned near their thresholds (20-50 dB SPL), but have very
broad, overlapping and asymmetric frequency response ar-
eas at higher sound levels ( � 60 dB SPL). The 30,000 fibers
that constitute the auditory nerve form the nexus through
which virtually all information about the acoustic stimulus
is transmitted to the central auditory system. However,the
broad and shifting character of frequency tuning at higher
sound intensities makes spectral representations based on
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profiles of ANF spike rates highly unlikely. Instead, accu-
mulated evidence suggests that most of the stimulus spec-
trum related information is conveyed through the auditory
nerve via spike timing patterns. This “phase-locked” timing
information, which extends to periodicities up to roughly 5
kHz, is critical both for fine auditory localization and fre-
quency discrimination. It appears that this fine temporal in-
formation that is discarded (in the form of spectral phase) by
artificial speech analyzers is utilized by the human auditory
system for both auditory scene analysis and for the repre-
sentation of periodicity (pitch) and spectrum (timbre, for-
mant structure). We hypothesize that the temporal patterns
of spikes convey information about the signal components’
modulations and timing information related to the transient
components. Hence we proceed to model and characterize
these quantities.

3. SIGNAL PROCESSING APPROACH

Our overall feature extraction method is as follows. In a
real-world acoustic environment (e.g. an office or a crowded
restaurant) acoustic sensors simultaneously receive sounds
from multiple sources. To identify which sound comes from
which source it is necessary to first decompose the com-
posite signal into more manageable bandpass components
and then group the components that belong together based
on some of their common attributes (e.g. common har-
monicity). With this goal in mind we model a sensor out-
put � � � �

as a sum of � bandpass signal components. That
is � � � � � 
 �  � � �  � � �

. Some of these bandpass compo-
nents, say

� � � � �
,

� � � � �
, ..

� � � � �
,

� � � � �
constitute the

desired speech signal (
� � � � �

to
� � � � �

are assumed to be
its formants) and the other �  �

components are due to
interfering signals. We propose an adaptive filterbank al-
gorithm, called MVFB (Minimum Variance Filter-Bank),
which decomposes such a complex signal (to the extent pos-
sible) into individual signal components. Once the signal
components are separated, we analyze the details of each
of these components. Some signal components are said to
be Spectrally-Compact, that is, they have a prominent spec-
tral peak and are relatively narrow band, such as some low-
frequency speech formants. For such a component we ex-
tract and track its carrier frequency ! " , its amplitude # "
and further characterize its phase-envelope modulations [1].
Other signal components are deemed to be Spectrally Dif-
fuse, that is, they are relatively compact in time and are bet-
ter characterized by modeling them in the dual domain. Af-
ter the signal components are separated and analyzed, we
group the signal components that belong together based on
their common harmonicity, onset/offset times and source di-
rection dependent delays and isolate the (features of the) de-
sired speech signal from those of the interfering signals.

3.1. Models for a Bandpass Signal

When a signal is persistent / continuous and its band-
width is less than a specified value (say less than the critical
bandwidth at a given frequency location e.g., about 200Hz
bandwidth at a center frequency of 2kHz) then we call it
Spectrally-Compact. Formants with narrow bandwidths fall
into this category. On the otherhand wider bandwidth for-
mants and transients are said to be Spectrally-Diffuse. We
have developed models for such bandpass signals in refer-
ence [1]. We outline these models here.

It is convenient to work with the complex version of
bandpass signals (or analytic signals). We denote an ana-
lytic signal component by

�  � � �
, that is

�  � � � � # " & � � � ( * , . / 1 2 4 , 1 6 6 8
(1)

Its envelope is 9 �  � � � 9 and its instantaneous frequency (IF) is�� ; == 1 ? �  � � �
. Unfortunately, this signal model does not lead

to any insight into the relationship between phase and enve-
lope functions. To further understand the phase-envelope
relationships, following Herbert Voelcker [2], we have in-
voked a certain type of duality between the envelope (and
phase) of an analytic signal and the magnitude (and phase)
response of a causal linear-time-invariant (LTI) system. That
is, we model the the envelope and phase of analytic sig-
nals using pole/zero models (with poles and/or zeros located
in the complex-time plane), in the same way that the LTI
systems are modelled with poles and zeros located in the
standard complex-frequency (the @ or � ) plane. Using this
perfect dualism between complex-time representation of the
signal and an LTI system’s frequency response, we can then
model an arbitrary bandpass analytic signal in Eq.(1) as a
product of minimum phase (MinP) and maximum phase
(MaxP) signals. That is

�  � � � � # " ( * . / 1 ( C , 1 6 2 * FC , 1 6G H I JK M O �
( P , 1 6 R * FP , 1 6G H I JK T U � V (2)

where WX � � �
is the Hilbert transform of X � � �

. Taking the nat-
ural logarithm on both sides of Eq.(2) and then its time-
derivative we get

Y
Y � [ \ ] � �  � � � � � _ ! "G H I Ja c d

e gX � � � e _ W gX � � �
G H I JT O T h i 1 M "

e gj � � �  _ W gj � � �
G H I JT O 1 M T O T h i 1 M "

V
(3)

where “dot” denotes the time derivative. Note that ! " (the
Average Instantaneous Frequency (AIF)) and the analytic
and antianalytic components all have essentially nonover-
lapping spectra and hence can be separated by filtering. See
Fig.4 in [3]. If the signal

�  � � �
has a dominant unimodal

spectral peak then the AIF (measured either by using phase
derivative of

�  � � �
or by counting zero-crossings) is a re-

liable feature of the bandpass signal. Further, low-pass fil-
tering log 9 �  � � � 9 yields log # " which we call as the Average
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Log-Envelope or ALE. Thus the ALE, AIF and the analytic
and antianalytic components (which characterize the spec-
tral tilt) of a bandpass signal are all obtained as features.
Finally, note that the modulation analysis used here is the
“time-domain” analog of cepstral analysis used to separate
the causal and noncausal parts of a sequence except that it
is applied here to each spectrally-compact component, not
the entire signal.

If a signal component
� � � � �

is transient in nature (as-
suming that it is composed of a single “bandpass pulse”)
then we model its Fourier transform as

� � � � � 	 
 � 
 � � �  � � � � � � � � � � � �
� (4)

where � is the frequency variable and �
�

is the location of
the pulse with respect to a time reference. Note that this
model is the dual of the model in Eq.(1). The delay, �

�
, is

the counterpart of the AIF in Eq.(1) and the model can be
decomposed into causal and noncausal parts analogous to
that in Eq.(2).

3.2. MVFB Algorithm for Tracking Bandpass Compo-
nents

The two branches of the proposed minimum-variance fil-
terbank (MVFB) algorithm are shown in figure 1. We have
space here to discuss in some detail the left branch only. The
left branch has a set of wideband filters spanning the en-
tire frequency range of interest. Similarly, the right branch
has a set of narrowband filters. The input signal is simulta-
neously processed through both filterbanks. The envelopes
of the filtered signals are continually monitored. When the
envelopes of the narrowband filters’ outputs exceed a cer-
tain threshold they indicate the “places” or spectral regions
where signal power is significant. This information is then
used to “enable” the groups of wideband filters that are lo-
cated in those spectral regions. One such group consisting
of � wideband filters is shown inside a dashed rectangu-
lar box (figure 1). The � filters are then linearly combined
with weights 	

�
� ... , 	 � to form a resultant filter. The

output of the resultant filter is
� � � � � 	 � �� � �

	 �  � � � �
. The

weights 	 � are determined such that the frequency response
of the resultant filter is constrained to be unity at a given fre-
quency � ! (called the steering frequency) while the energy
in

� � � � �
is minimized. This results in a simple minimiza-

tion problem similar to the minimum variance distortion-
less receiver (MVDR) well known in adaptive beamform-
ing [4]. Recall that in MVDR beamforming the array re-
sponse is required to be unity in the direction of the steering
vector while the power received from all other directions is
minimized by adaptively placing nulls in the array response
pattern. We adopt this same principle here by passing the
desired bandpass component

� � � � �
without distortion while

placing nulls at all other signal components’ frequencies.
The phase derivative of the bandpass signal

� � � � �
is aver-

aged to obtain an estimate of the AIF which then serves

as the steering frequency. Since speech formants slowly
drift with time, the steering frequency (same as the AIF)
helps move the resultant filter along the formant trajectory
thereby tracking the formant frequencies. The MVFB al-
gorithm is adaptive in two ways. First, it adaptively sup-
presses all other bandpass components while passing the
desired bandpass component undistorted. This is crucial for
estimating the AIF reliably since other components do not
interfere with the AIF estimation. In this respect MVFB is a
significant improvement compared to our previous method
[5]. And secondly, the resultant filter with the help of the
steering frequency positions itself right on top of the for-
mant.

The spectrogram of the speech utterance “Three” and
the formant tracks (AIFs) for three groups of filters obtained
by the above procedure are shown in figure 2. Particularly
noteworthy is the figure 3 which shows the tracks of the
nulls of the time varying resultant filter whose passband
stays centered on the third formant (located around 3 kHz).
Note that the nulls of this filter are always centered over the
first and the second formants, even though these formants
themselves are slowly drifting. Similarly, the resultant filter
working in the second formant region has nulls placed over
the first and third formant locations (not shown here) and
so on. The low frequency formant tracks obtained by the
above procedure for a longer speech utterance “3o33951”
are plotted over the spectrogram in figure 4.

Summarizing, since we have to filter bandpass compo-
nents of unknown bandwidth and center frequency, it seems
reasonable to try to synthesize the desired filters on line,
based on the characteristics of the input signal itself. This
is achieved in two steps. The narrowband filters first lo-
cate roughly the spectral regions with signal energy. Then
wideband filters in those regions are combined such that the
resultant filter is wide enough to pass a particular compo-
nent, while nulling all other components by using a mini-
mum variance criterion. The operation of the right branch is
analogous, i.e., it allows a bandpass pulse located at time �

�
to get through undistorted, while suppressing other pulses
in its neighborhood. The compressive nonlinearities tend to
enhance the onsets and offsets of signal components.
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“Frequency Analysis” at a given time

Fig. 1. Block diagram of the Minimum Variance Filterbank (MVFB) Algorithm
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Fig. 2. AIFs plotted on top of spectrogram for the utterance
“Three”.
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Fig. 3. Tracks of the nulls of the resultant filter while its
passband is centered on the 3rd formant.
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Fig. 4. AIFs plotted on top of spectrogram for the utterance
“3o33951”.
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