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ABSTRACT

We propose a flexible and robust SNR estimation method 

for the real conditions, when neither clean reference 

signal nor speech activity is available. This method is 

based on Gaussian mixture modeling on the log-power 

domain of the noisy speech and use the estimated 

subspace distribution parameters to derive the SNR 

measures. The experimental results show better 

performances in estimating both the segmental and global 

SNR compared to conventional method based on VAD. 

The second application presented in this work is local 

noise power estimation, where the same model is applied 

to each frequency bin. Furthermore, an empirical MAP 

solution using second order statistics is applied to estimate 

the local noise powers in order to implement a Wiener 

filtering system. The evaluation experiments show the 

improvements of the proposed speech enhancement 

method in both segmental SNR and ASR performances.

1. INTRODUCTION 

The SNR and noise powers estimations are important 

problems in speech processing. The SNR is a main 

measure of the speech quality index which is frequently 

used in the data collection and classification task and the 

local noise powers estimation is used in speech 

enhancement systems.  In many applications, SNR and 

local noise power estimations of noisy speech are highly 

difficult because neither clean reference signal nor speech 

activity is given. Conventionally, the SNR and local noise 

power estimations are based on voice activity detection 

(VAD). However, these methods work well only at high 

SNR conditions and therefore, its application is limited. 

The basic idea of this work is using the natural property of 

the speech signal, which always contains the silent 

duration to model and estimate them via a probabilistic 

mixture model. Furthermore the estimated distribution 

parameters are being used in the SNR and local noise 

power estimation and it is carried out without VAD. The 

organization of this paper is as follows. In section 2 we 

discuss the stochastic view of SNR definitions and 

Gaussian mixture modeling (GMM) on the log-power 

domain, and propose the statistical estimation method for 

the segmental and global SNR indexes. In section 3 the 

model is applied on each frequency bin and to estimate 

the local noise powers with application to a Wiener 

filtering. Section 4 summarizes the work.

2. SNR ESTIMATIONS 

2.1 Stochastic view of SNR definitions 

Several measures of SNR are used as the speech quality 

indexes. Since a speech signal is short-time stationary, a 

segmental SNR is advantageous [1]. Originally, the 

segmental SNR is calculated in speech active frames:  
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where: SP i and NP i are respectively the clean 

reference speech and the noise power at the i -th speech 

active frame, and thus are called frame powers. 

Alternatively the global SNR is noted as 
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When clean speech is not available the total (noisy 

speech) to noise ratio (TNR), is more suitable to use and 

noted as: 
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where XP i is the frame power in the i -th speech active 

frame. Due to the independence of speech and noise we 

suppose that: 

X S NP i P i P i .  (4) 

At very high SNR conditions, the TNR approximates well 

the SNR and therefore can be used as the SNR index [2]. 

When the frame number L is large, the averaging in (1) 

converges to the expectation.  The segmental SNR can be 

denoted in a stochastic form of expectations as follows: 
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Figure1. GMM on log-powers domain 

Analogously, we denote other measures in stochastic 

form:           
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2.2 Gaussian mixture modeling  

As was mentioned above, the basic concept of this work is 

using the probabilistic mixture modeling of the observed 

noisy speech. The two questions are which model and on 

which domain the modeling should be assumed?  In this 

work we use the two-component Gaussian mixture on the 

log-power domain and noted by 
2 2

0 1
, , , ,N N X Xp x x x ,   (9) 

where: 1010 log observedx P . Note that, the logarithm plays 

a role of a compressed operator which reduces the 

dynamic range (or variance) of speech subspace and 

therefore should provide better the parameter estimation. 

The simple two-component Gaussian mixture model is 

chosen due the requirement of the consistency of the 

parameter estimation, where only a single noisy speech is 

available. Our procedure for processing is as follows. The 

power of the observed noisy speech is estimated using a 

frame length of 4ms and a frame shift of 2ms. Next, the 

EM algorithm is applied to fit the two mixture Gaussian 

model to the log frame-power sequence. The initial 

parameters are chosen by the standard K-means method 

[3, 4]. We verified the EM convergence after 5-7 

iterations and the required minimum length of the noisy 

speech is approximately 0.5 second with 8 kHz sampling 

frequency. 

2.3 Segmental SNR estimation 

On basic of the definition given in (6), the segmental TNR 

is considered equal to the difference between two 

estimated means,  

seg X NTNR ,  (10) 

where: X N . Note that the segmental TNR 

approximates the SNR well at high SNR conditions and 

can be used as a segmental SNR estimation. However the 

segmental SNR can be derived more accurately by using 

estimated distribution parameters.  Substituting (4) into 

(5), the segmental SNR is denoted by 
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Recalling the Gaussian mixture model, the two random 

variables in (11) have Gaussian distributions: 
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and therefore their difference is also Gaussian distributed:
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The expectation of the non-linear function (11) has no 

closed form but can be approximated using an asymptotic 

expansion: 
2 3ln 1 0.7 0.9r r r re r e e e . (14) 

Note that the approximation error is less than 1% 

at 0.12r , i.e. 
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N
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P
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In this work our interest is the signals with SNR from 0 to 

20 dB and thus the error of approximation (14) can be 

neglected. The expectation of approximation (14) when 

r is a Gaussian random variable can easily be calculated. 

A closed form of segSNR  is derived as follows: 
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where

ln10

10
X Nm ,

2

2 2ln10

10
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A simulation experiment is performed to verify the 

effectiveness of the proposed estimation. The clean 

speech signal is taken from the JNAS database (Japanese 

Newspaper Article Sentences Speech corpus). Twenty 

sentences of 5 male and 5 female speakers are randomly 
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chosen. Noise is artificially added to the speech signals so 

that the noisy speech reaches the given level of segmental 

SNR from 0dB to 20dB. Babble noise is used for the 

simulation. The segmental SNR and segmental TNR are 

estimated by the above described algorithms. For 

reference, the segmental SNR based on VAD [2] is also 

implemented. Figure 2 shows the results obtained in the 

babble noise condition. The segmental TNR using GMM 

gives more accurate estimation than that using VAD [2]. 

However, the errors in the segmental TNR estimation 

using GMM are seen at low SNR conditions. The
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Figure2: Segmental SNR estimation errors  

segmental SNR estimation using GMM (16) overcomes 

this problem and is more accurate. Some errors at very 

high SNR conditions can be explained as being due to the 

influences of speech pause durations being added to the 

noise subspace. These come to have an influence on the 

estimation of noise power subspace when the noise level 

is low and comparable to them. 

2.4. Global SNR estimation 

Gaussian mixture modeling can also be used for global 

SNR estimation. Note that global TNR and SNR are 

directly related: 
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and therefore the estimation of one of them is sufficient as 

a basic for calculating the other one. The GMM on the 

log-power domain is equivalent to the log-normal mixture 

on the power domain. Given the Gaussian distribution of 

log-power, the power expectation is given by 
2 ln10

2 10 200
1010 log , 10X X .

Denote the expectations of noise and noisy speech:
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Substituting (19) into (8) yields: 

2 2ln10

20
global X N X NTNR . (20) 

An experiment using the database described in section 2.1 

is performed. The global SNR using VAD is also 

implemented. Figure 3 plots the average global SNR 

estimation errors for the babble noise estimation errors for 

the babble noise condition, as it was expected the 
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Figure 3: Global SNR estimation errors 

proposed method estimates the global SNR more 

accurately than the conventional method especially at the 

low SNR conditions. 

3. LOCAL NOISE POWER ESTIMATION AND 

APPLICATION TO SPEECH ENHANCEMENT 

Second application presented in this work is the local 

noise power estimation. The conventional methods for the 

local noise power estimation are mainly based on a 

heuristic manner:  -the moving average method estimates 

the local noise powers recursively [6]: -the minimum 

statistic (MS) method estimates the local noise powers on 

basic of the minimum value of the preceding N frames 

[5].  A common problem of these methods is that, their 

effectiveness always depends on some control parameters 

which is in general difficult to define. In contrast, in this 

work we present a statistical approach for this problem by 

applying the mixture modeling on each frequency bin 

k for the log-power sequences. 
2
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As same as in (19) the variances of local noise and noisy 

speech powers can be denoted
2 2
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(22)

The maximum a posterior (MAP) estimation for local 

noise powers is denoted by 

ˆ arg max log |
N

N X N N
P

P p P P p P . (23) 

However, since Sp P has no closed form, the MAP 

estimation (23) is not realized.  Here, we use an empirical 

MAP solution by approximating the distributions based 

on first and second order statistics [7]. This yields an 

empirical solution denoted by: 
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where: the means and variances of the noise and noisy 

speech powers are estimated by (19) and (22) 

respectively. The estimated local noise powers (24) can 

be used for a noise suppression filter which is noted by: 

ˆ , , ,S m k G m k X m k   (25) 

For the Wiener filtering, the gain factor is estimated via 

the local SNR: 
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The wave form of enhanced speech can be reproduced by 

the phase adding, inverse IFFT, overlap and add 

technique [1]. In the evaluation, we implement the Wiener 

filter with minimum statistics and the proposed GMM 

method for local noise power estimation. The Aurora 2 

data is used for the evaluation. Figures 8-9 show the 

results of average segmental SNR and ASR improvements 

over moderate SNR and noise conditions. The GMM 

noise estimation based Wiener filter are shown to be 

comparable to the MS method at low and middle SNR 

conditions and even better at high SNR conditions. 

4. CONLUSIONS 

We propose a flexible and robust SNR method for the real 

case when neither clean reference signal nor speech 

activity is available. This method uses the natural property 

of speech signal which always contains the silent 

durations to model them as a probabilistic mixture model. 

The simple two-component GMM on the log-power 

domain is shown to be simple but effective to estimate the 

SNR indexes. This model can also be extended to apply 

on each frequency bin in order to noise power estimation. 

The performance of proposed noise estimation method is 

shown to be at least comparable to the conventional 

method, when is free from any control setting parameter. 
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Figure 8: Segmental SNR improvements  

Aurora 2 Clean traning Relative ASR improvements
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Figure 9: Relative ASR improvements with clean training. 
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