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ABSTRACT

A dysphonia, or disorder of the mechanisms of phonation in the 

larynx, can create time-varying amplitude fluctuations in the 

voice. A model for band-dependent analysis of this amplitude

modulation (AM) phenomenon in dysphonic speech is 

developed from a traditional communications engineering 

perspective. This perspective challenges current dysphonia

analysis methods that analyze AM in the time-domain signal. An 

automatic dysphonia recognition system is designed to exploit

AM in voice using a biologically-inspired model of the inferior

colliculus. This system, built upon a Gaussian-mixture-model

(GMM) classification backend, recognizes the presence of 

dysphonia in the voice signal. Recognition experiments using 

data obtained from the Kay Elemetrics Voice Disorders

Database suggest that the system provides complementary

information to state-of-the-art mel-cepstral features. We present

dysphonia recognition as an approach to developing features that 

capture glottal source differences in normal speech.

1. INTRODUCTION 

The ability to recognize characteristic voice qualities is an

intriguing human trait. With this ability, we can obtain 

information such as a speaker’s identity, state of health, and

degree of fatigue. The acoustic properties that convey these 

elements are continually being understood. Our research is 

motivated by the desire to develop features that capture a class

of source mechanism characteristics related to voice qualities. 

Automatic recognition systems in speech technology often

focus on representing the vocal tract of speakers, but the source

properties tend not to be explicitly analyzed. One area of 

automatic recognition that has only recently begun to emerge is

automatic speech disorder, or dysphonia, recognition. A 

dysphonia is a disorder of the voice production mechanisms in 

the larynx with specific perceptual, acoustic, and physical

correlates. Examples of these disorders include excessive tension

of the laryngeal muscles and the presence of abnormal masses of 

tissue on the vocal folds [16]. The problem of dysphonia

recognition is particularly interesting because it is largely

dependent on differences in the glottal source, rather than 

differences in the vocal tract resonances. Dysphonic speech also 

may represent the extremes of acoustic phenomena occurring in

normal voices such as the irregular nature of glottalization [12].

Because dysphonia recognition deals specifically with 

differences in the voice source mechanisms, there is hope that

the techniques found in this domain can be applied to other 

recognition problems such as speaker recognition. 

This paper provides evidence that the dysphonic voice can

be modeled as frequency-band-dependent amplitude 

fluctuations. We relate these fluctuations to communications 

engineering concepts in order to build an AM synthesis model of 

dysphonic voice. A biologically-motivated analysis model is 

then explored with which to capture these modulations. We

present evidence from a set of GMM-based dysphonia

recognition experiments that our model captures complementary

voice information to state-of-the-art mel-cepstral features.

2. AMPLITUDE MODULATION MODEL FOR VOICE 

2.1. Envelope Fluctuations in Voice 

Figure 1. A synthesized sum of amplitude-modulated sinusoids 

illustrating the concept of bandwise envelope fluctuations. The 

time waveform (a) shows little periodicity, whereas there is clear 

structure in the spectral domain (b). 

*This work is sponsored by the United States Air Force Research 

Laboratory under Air Force Contract F19628-00-C-0002. Opinions,

interpretations, conclusions, and recommendations are those of the 

authors and are not necessarily endorsed by the United States

Government.

An interesting source characteristic common in the dysphonic

voice is time variation of spectral amplitude envelopes. These

fluctuations can occur in different bands and interact to produce 

complicated time-domain behavior. One way to illustrate this
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phenomenon is shown in Figure 1, where a sum of sinusoids is 

depicted, each amplitude-modulated by a different sinusoidal 

envelope. Whereas the sum of the signals yields a time

waveform without clear periodicity or structure, the spectrogram 

reveals clear amplitude-modulated envelopes. 

An example of these bandwise fluctuating patterns in real 

dysphonic voice taken from the Kay Elemetrics Voice Disorders

Database [1] is shown in Figure 2. This image depicts the 

spectrogram of a female voice patient producing the sustained

vowel /a/. We notice that throughout the spectrogram, there are

different regions of repeating patterns; the boxes in the figure

highlight prominent examples of these patterns that are different

in different frequency bands. 

Other observations of fluctuating patterns in dysphonic

speech have been made [8] including repeating patterns of

glottal pulse amplitudes, high-frequency pulses with sinusoidal

amplitude envelopes, and wideband noise with repeating 

amplitude patterns [5]. Our work suggests that many fluctuating 

spectral envelopes seen in dysphonia can be modeled by

sinusoidal carriers, each modulated by a different set of sideband 

components. In some cases the sinusoidal carriers are the

harmonic line components of the glottal waveform. In the 

frequency domain, the sidebands are visible as smaller

neighboring components [8]. As we will show in the next

section, this view is consistent with an engineering definition of 

AM.

2.2. AM Model 

Band-dependent envelope fluctuations are not unique to the 

voice, one example being their occurrence in the field of

communications engineering. Consistent with our observations 

of dysphonia, we propose an AM model for dysphonic voice 

whereby a series of bandlimited signals are transposed to higher 

frequencies. This process amounts to modulating the amplitude

envelopes of a series of sinusoidal carriers. In mathematical

form, amplitude modulation of a single sinusoid using a 

bandlimited envelope is defined in [2] as: 

( )( ) cos( )cg ts t t

where

( ) [1 ( )]cg t A m t

is the envelope multiplied by the cosine carrier with radian 

frequency c to create the modulated signal s(t). The 

bandlimited source signal, m(t), is used to create the envelope by

adding it to unity and scaling the sum by a constant Ac. Here

m(t) is defined to be between -1 and 1 such that g(t) always

remains positive. Also, c is assumed to be no less than twice 

the highest frequency component of the original signal. 

Analysis in our model is performed much in the same way

that demodulation is done in the communications domain, as 

shown in Figure 3. First, frequencies around the carrier are

isolated by bandpass filtering, and the result is passed through an 

envelope detection stage. In our work, we use incoherent 

detection using the envelope of the analytic signal obtained by

the Hilbert transform.

Figure 3. Model for the analysis of amplitude modulations in 

voice using bandpass filtering followed by envelope extraction 

using the magnitude of the analytic signal. 

Thus, our model presents the human voice as created by a 

series of summed amplitude-modulated sinusoidal sources with 

non-overlapping bandwidths. Researchers including Teager and 

Titze have highlighted the importance of understanding the 

speech signal as a glottal source carrier modulated by

physiological inputs such as muscle movements, vortices of air, 

and the motion of laryngeal tissues. [14, 15]. The human voice, 

however, is almost surely not well modeled solely in this way.

The physical sources of sound produced by the glottis and by

turbulent airflow in the vocal tract are for the most part not well 

described as single sinusoids. Another issue is that there is also

Figure 2. Spectrogram

of a sustained vowel 

produced by a female 

voice patient. A 10-ms 

Hamming window was

used in generating this 

figure. Top left box: 

30-to-40-Hz pattern 

around F3; peaks

highlighted by arrows.

Bottom left box: 

50-to-60-Hz pattern 

around F1. Right box: 

AM at about 30 Hz

near F1. Different 

bands show different 

AM patterns. 
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probably an overlap between the carriers and sidebands of

physiologically plausible speech sources. Nevertheless, our

representation is consistent with our observations of real 

dysphonic speech and may provide the basis for more complex

models.

2.3. Biologically-Inspired AM Analysis

There is evidence that structures for AM analysis as described

above exist in the human brain in an area called the inferior

colliculus (ICC). In particular, the ICC is thought to extract the

frequency content of the modulation envelopes applied to 

different frequency bands of auditory stimuli. By modeling the 

ICC after a design introduced by Dau, Kollmeier, and

Kohlrausch [3, 7], we can construct a biologically-inspired

modulation feature extraction system.

Figure 4. Architecture of the auditory model including the

inferior colliculus modulation filtering stage. 

The first stage of the ICC model processes the input signal

with a bank of 20 mel-spaced cochlea-like gammatone filters. 

Following this stage, the envelope of each of these output 

channels is filtered by a second bank of 13 modulation filters 

with exponentially spaced center frequencies from 12 to 107 Hz.

The envelopes resulting from this process yield a 13-by-20

element output matrix. The sum is then taken across the columns

yielding a vector of 13 elements per frame. This process is

shown schematically in Figure 4 (further details can be found in

[8, 11]).

3. AUTOMATIC DYSPHONIA RECOGNITION 

We devised an automatic system to categorize speech as either 

pathological or normal. By using the above auditory model 

sensitive to bandwise modulations, we hypothesized that we 

would be able to capture information unique to dysphonia,

improving performance of the system over one using mel-

cepstral features alone. 

3.1. Methods 

The voice corpus used for these experiments was the Kay Voice 

Disorders Database [1]. For our tests, we used the 12-second 

continuous Rainbow Passage utterances. Each file was antialias-

filtered and downsampled to a 8-kHz sampling rate, the lowest 

common denominator of the dataset. 

The Kay voice database is split into two groups—normal

and pathological. Due to issues with the contents of the database 

discussed in [8], a number of pathological utterances were 

discarded from our evaluation. This yielded 397 pathological

and 53 normal voices which were used in a normal/pathological 

recognition experiment. A jackknife method was devised to 

produce 5 different groupings of the voices, each using 

approximately 80% of the utterances for training and 20% for 

testing. In this way, all of the utterances could be used for

testing without the problem of overlapping training and testing 

sets.
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To extract features, each utterance was first run through the 

ICC auditory model of Figure 4 at a 5-ms frame interval or the

standard mel-cepstrum using 20 filters at a 10-ms frame interval.

The cepstrum of each model-output vector was computed,

discarding the zeroth bin. RASTA and cepstral-mean subtraction 

channel-compensation techniques [6] were then applied and 

delta features computed for each feature set.

The features were then processed by a GMM-based pattern

classifier [13]. Two models, one for normal voice and one for

pathological utterances, were trained and the test utterances were 

compared against them. Each test yielded a likelihood score 

which was used to create a detection-error tradeoff (DET) curve 

to judge performance, giving false-alarm versus miss probability

for different score thresholds. 

3.2. Results 

DET curve results for standard mel-cepstrum, ICC, and the

linear fusion of the two techniques using an exhaustive search 

method is plotted in Figure 5 [8]. As shown, the equal-error rate 

(EER)—the point where the false-alarm probability equals the 

miss probability—of mel-cepstrum alone is 3.77 percent, with 

ICC yielding 5.66 percent EER, and a linear fusion of the scores 

resulting in 2.02 percent EER. Both the ICC model and the 

fusion improve performance over mel-cepstrum, with the fusion

resulting in a benefit over the entire DET curve. This result gives 

evidence that the ICC model provides complementary dysphonia

information to the mel-cepstrum.
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Figure 5. Performance of the mel-cepstrum compared with the 

modulation features. 
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4. DISCUSSION 

Objective techniques exist in the speech pathology literature by 

which to measure time fluctuating amplitude envelopes in the 

voice. Most popular approaches are based on measures of either 

glottal-pulse timing and amplitude perturbations such as jitter, 

shimmer or the harmonic-to-noise ratio. These measures work 

reliably only on steady vowel portions of speech and are 

sensitive to estimates of pitch [9, 10]. Exactly how our AM 

model relates to these measures is not known, although both are 

expected to capture some of the same amplitude envelope 

phenomena.

Dysphonia recognition using the Kay database is reported 

in the literature by several groups. Dibazar and Narayanan [4] 

describe a normal/pathological classification system consisting 

of a GMM classifier and using mel-cepstral features. Using a 

somewhat different subset of the normal and pathological 

Rainbow Passage they report a 2.54 percent EER [4]. Objective 

clinical perturbation measures, such as shimmer and jitter can 

also be used as a model for feature extraction. The best previous 

attempts using this technique on the Kay database sentences 

obtained 95.6 percent recognition for the Rainbow passage [10]. 

Our results suggest improved performance when compared to 

these studies. 

It is also possible to perform recognition experiments for 

individual voice disorders such as paralysis and lesions on the 

vocal folds. Our research has included the implementation of 

several versions of specific-dysphonia recognition experiments, 

but this problem has proved significantly more difficult than the 

normal/pathological recognition task. A vocal-fold paralysis 

recognition system, for example, performed at 30 percent equal-

error-rate level in the best case [8]. There has not been extensive 

reporting on specific dysphonia recognition in the literature 

although [4] discusses one series of experiments with a throat 

muscle-tension disorder called A-P squeezing. 

One potential problem with the Kay database is that some 

of the normal speakers were recorded at different sites and over 

potentially different channels than the pathological voices. To 

test the possibility of having developed a channel recognition 

system rather than a dysphonia recognition system, we ran a 

preliminary experiment with only the non-speech portions of the 

utterances used in the normal/pathological distinction. An 

energy-based speech detection software program, a standard part 

of the Lincoln Laboratory GMM system, was used to select non-

speech frames. As the energy threshold for speech detection was 

lowered, the DET curves became worse, eventually exhibiting 

about 25 percent EER. Therefore, although further study of the 

database properties is needed, there is evidence that suggests that 

our system primarily detects dysphonic speech and not the 

channel on which it was recorded. 

5. CONCLUSIONS 

We have presented a model by which the voice can be 

represented as a series of summed amplitude-modulated 

sinusoids. This view is motivated by observations of dysphonic 

voice that provide evidence of band-dependent amplitude 

modulations in the human voice. A biologically-inspired model 

was built to analyze modulations in speech and dysphonia 

recognition by using this new model. Results with this technique 

showed improvements over standard mel-cepstral features, 

especially when a linear fusion was implemented. This research 

supports the view that a bandwise amplitude modulation analysis 

provides complementary information about the voice source. 

Although we have focused on extreme voice types in dysphonic 

speech, the underlying technology may be useful in more 

general speech technology applications. 
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