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ABSTRACT

In this work, we propose a novel confusion network(CN) 

generation algorithm with linear time complexity O(T), which is 

capable of transforming a very large lattice into a confusion 

network with insignificant time. We further extend the confusion 

network concept to incorporate the case that a long word is split 

into short words. Finally, we develop an algorithm of shortest 

path search that finds a sentence hypothesis from a word lattice 

to directly minimize expected word error rate. The proposed 

algorithms are evaluated on the Switchboard task, where 

significant reduction of computation time was observed for the 

proposed confusion network algorithm as compared with a 

previously proposed confusion network algorithm, and improved 

word accuracy performance was observed for both the proposed 

CN algorithm and the shortest path algorithm as compared with 

one-best beam search decoding.

1. INTRODUCTION 

The goal of standard maximum a posterior probability (MAP) 

speech decoder is to find the sentence hypothesis that maximizes 

the posterior probability P(W|A) of word sequence W given an 

acoustic observation A. Such an approach is known to minimize 

sentence error rate. However, commonly used performance 

metric in speech recognition is word error rate. There is 

therefore a mismatch between decoding criterion and 

performance measurement. 

Many state-of-the-art speech recognition systems provide 

word lattice output in addition to the MAP-based sentence 

hypothesis W for each speech utterance. A word lattice is a 

Directed Acyclic Graph (DAG) which contains a large number 

of competing word hypotheses, denoted by corresponding links 

and their associated likelihood scores. The link scores are 

obtained through a combination of acoustic and language model 

probabilities. Mangu et al [1] proposed transforming word lattice 

into confusion network (CN), and utilized CN for producing 

sentence hypothesis that minimizes expected word error rate. 

The CN algorithm of [1], referred to as MBS-CN, successfully 

reduced word error rate. However, its time complexity is high. 

For a lattice with T links, the time complexity of MBS-CN is 

O(T3). The high complexity of MBS-CN was alleviated by 
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aggressive link pruning in word lattice. Since in an online 

system, the overall processing time, including front-end 

processing, feature analysis, lattice generation, hypothesis 

alignment and best hypothesis extraction, needs to be less than 

1.0×real time, it is desirable to investigate more efficient 

methods for confusion network generation, or expected word 

error rate minimization. 

In the current work, we propose a novel confusion network 

(CN) generation algorithm with linear time complexity O(T). 

The proposed algorithm is capable of transforming a very large 

lattice into a confusion network with insignificant time. We 

further extend the confusion network concept to accommodate 

the case that a long word gets split into short words. Finally, we 

develop an algorithm of shortest path search that finds a 

sentence hypothesis directly from a word lattice to minimize 

expected word error rate. The proposed algorithms were 

evaluated on the Switchboard task, where significant reduction 

of computation time was observed for the proposed confusion 

network algorithm as compared with MSB-CN, and improved 

word accuracy performance was observed for both the proposed 

CN algorithm and the shortest path algorithm over conventional 

one-best beam search. 

The rest of the paper is organized as the following. Section 

2 introduces the basic concepts of confusion network. Section 3 

presents the fast CN algorithm. In section 4 the shortest path 

search algorithm is derived. In section 5 experimental results of 

these methods based on the Switchboard 2001 HUB-5 Corpus 

are presented. We conclude our work in the final section 6. 

2. BASICS OF CONFUSION NETWORK 

The confusion network as proposed in [1] aligns links on a word 

lattice and transforms the lattice into a linear graph in which all 

paths pass through all nodes. An example of confusion network 

is shown in Fig. 1. In Fig. 1, each pair of adjacent nodes defines 

a position in the CN.

Fig. 1  Example of confusion network 

The transformation is performed by a clustering procedure that 

groups time overlapped links into clusters based on their 

phonetic similarity and word probabilities while preserving the 
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precedence order of the links encoded in the original lattice. The 

confusion network was utilized in [1] to generate word sequence 

hypothesis that minimizes expected word error rate rather than 

sentence error rate, where the word error criterion has a better 

match with the Levenshtein-distance based performance metric 

in speech recognition. Given the alignment and the link posterior 

probabilities of a confusion network, the word sequence 

hypothesis with the lowest expected word error is obtained by 

picking the word with the highest posterior probability at each 

position in the alignment. The main complexity of the confusion 

network approach lies in finding an optimal multiple string 

alignment of reference sentence hypotheses with a word 

sequence hypothesis, which has no known efficient solution. 

Here we propose a novel confusion network generation 

algorithm with the linear time complexity O(T). 

3. THE PROPOSED FAST CN ALGORITHM 

The nodes in a confusion network, e.g., Fig. 1, are in effect node 

sets, with each node including a set of nodes in the original 

lattice. It is desired to divide the nodes in the lattice into a finite 

number of sets N0, N1, . . . Nn, so that the start and end nodes of 

each link in the original lattice are put into two consecutive node 

sets. Strictly, not all DAGs can be transformed into confusion 

network as defined. In order to generate CN with O(T), we resort 

to the following heuristic approach. 

Assumptions:

Let N={n0, n1, . . .} be the set of nodes and E={e0, e1, . . .} be the 

set of links in the original lattice, where every node n i N has a 

time mark t(ni). Let eu->v denote a link in the lattice with the start 

and end nodes u and v. Let NS={ N0, N1, . . .} be the set of node 

sets in the confusion network and let E
ji NN
 be the set of links 

with start and end node sets Ni and Nj. The following properties 

are assumed for the confusion network: 

a. ni Ni and nj Ni, t(ni)<t(nj)  i j

b. ni Ni and nj Ni, t(ni)=t(nj)  i=j 

c. eu->v E, if for u Ni and v Nj, eu->v corresponds to a 

link set E
nm NN

, then i m<n j (here n=m+1, Ni and Nj

are not consecutive, so we should align eu->v to two 

consecutive node sets Nm and Nn.)

Algorithm description: 

As in the MBS-CN algorithm, the fast CN algorithm requires 

calculation of the posterior probability for each link in the lattice. 

The link posterior probability P(l| A) is defined as the sum of the 

probabilities of all paths passing through the link l normalized 

by the sum of probabilities of all paths, which can be computed 

by the forword-backword algorithm[1]. The fast algorithm 

consists of the following steps. 

Step-1 Compute link posterior probability for each link in the 

lattice.

Step-2 Sort all nodes in N in order of increasing t(ni).

Step-3 Assign n0 to N0.

Step-4 For each node ni, in the order of i=1, 2, . . .,

i ) Suppose ni-1 belongs to Nj. If there is no link between any 

node in Nj and ni, assign ni to Nj, otherwise assign ni to Nj+1.

ii) For every link 
inue E, suppose u belongs to Ns and ni

belongs to Nt. If t =s+1, then the link is directly assigned to  

E
ts NN

. Otherwise, the link is assigned to E
nn NN 1

with  s+1  n t, where the link word probability and degree 

of time overlap are considered in the link placement, i.e.,  

n=
tks 1

maxarg {SIM(E
kk NN 1

,e)}

with

SIM (E
kk NN 1

, e) =

||

1

1 kk NNE
×

kNkN

kk

El

NN eEoverlapewlwsim

1

1
),())(),((

where w(l) and w(e) are words corresponding to l and e, sim(., .) 

is the phonetic similarity between two words, computed from the 

most likely phonetic base forms, overlap(E
kk NN 1

, e) is 

defined as the time overlap between E
kk NN 1

and e normalized 

by the sum of their lengths. The length of E
kk NN 1

 is Tmax(Nk-

1)- Tmin(Nk), where Tmax(Ni) = max{t(nj): nj Ni} and Tmin(Ni) = 

min{t(nj):nj Ni}

The time complexity of step 4 depends on the number of  

links in the set E
ts NN
. In general, even for a very large lattice,  

this number is less than 100. So the time complexity of step 4 is 

O(T). Furthermore, lattices as generated by various speech 

decoders, including HTK, have the nodes naturally sorted in 

order of increasing t(ni). Therefore, the time complexity of the 

proposed confusion network generation algorithm is O(T). 

 As a comparison in MBS-CN, the lattice to CN 

transformation is performed by a clustering procedure that 

groups time overlapping links into clusters while preserving the 

precedence order of the links, where O(T3) time is needed to 

initialize and preserve the order information. 

(a) Initial lattice 

(b) Confusion Network 

Fig. 2. Transform a lattice into a Confusion Network 

An example of transforming a word lattice into a confusion 

network by the proposed algorithm is shown in Fig. 2. In Fig. 2, 

EPS represents a NULL link, and its posterior probability equals 

1 minus the sum of the posterior probabilities of the rest links at 

this position. 
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As is seen in Fig. 2(b), confusion network allows easy 

comparison of alternative word hypotheses for each position. 

The hypothesis with the lowest expected word error rate can be 

obtained by picking the word with the highest posterior 

probability at each position. 

Algorithm Improvement 

In a confusion network, each link sits between two consecutive 

node sets. If a link is very long, however, aligning the link to 

two consecutive node sets may not be reasonable. Fig. 3 

illustrates such a case, where JULY is a much longer word than 

either the word DO or I. 

Fig. 3 Example of a long word broken into

two short words 

After forced alignment, one of the following two results will 

occur in the confusion network: 

Fig. 4  Two possible alignments in confusion 

network for the case of Fig. 3 

Based on the pronunciation and time information of these three 

words, we know that JULY should correspond to a 

concatenation of DO and I, that is, on one path the word output 

is JULY, and on another path the word output should be DO 

followed by I, which is a typical case of splitting a long word 

into two short words. To accommodate such a scenario and 

overcome the limitation in confusion network, we modify the 

algorithm such that when links are aligned, one link can end at 

two nonconsecutive node sets Ni and Ni+2. The modified 

confusion network is illustrated in Fig. 5. 

Fig. 5  Example of modified confusion network 

If the case of Fig. 6 occurs for long links, the link with higher 

posterior probability is held fixed and the other one is then 

aligned between two consecutive node sets. 

Fig. 6  The case prohibited in modified confusion network 

In some cases, a long word may be split into three or more short 

words. For simplicity, the proposed algorithm only allows the 

case of one long word split to two short words.

The modification of the algorithm can be made in sub-step 

ii) of step 4. If t>s+1, the link e should be put in either 

E
nn NN 1

or in E
nn NN 2

, based on link word probability and 

degree of time overlap. Computation of sim(., .) and overlap(., .) 

remain the same as before. 

By applying the improved alignment algorithm, the lattice 

in Fig. 2(a) is transformed into the modified confusion network 

in Fig. 7. 

Fig. 7  Modified confusion network for the

case of Fig. 2(a) 

As pointed out in [1], confusion network has a variety of 

applications in speech recognition, in addition to minimization 

of expected word error rate. For example, the word-level 

posterior probabilities included in the confusion network can be 

conveniently used for confidence annotation of recognition 

output, i.e., estimating the probability of correctness of each 

word. For detailed discussion of other applications of CN, please 

refer [1]. 

4. SHORTEST PATH SEARCH 

Minimization of expected word error rate can also be 

accomplished by a direct search on word lattice. To do so, we 

need to find a path with minimum word error rate, i.e., with 

minimum E(
n

1 L(W,R)), where n is the length of the reference 

string R. Given a word sequence W = w1w2 . . . wn, L(W, R) is 

hard to compute because R is unknown. For simplicity, we 

assume W and R have the same number of words. We also make 

a strong assumption that L(W, R) =

ni

ii rwL
...1

),( [3], where ri is 

the ith word of R. Let P (wi | A)=Pi. It is then easy to proof that 

E(
n

1 L(W, R)) = 1-

ni

iP
n ...1

1

Therefore, the path with minimum 1-

ni

iP
n ...1

1
 needs to be  

determined. By defining the length of a path as the average 

length of its links and the length of a link as one minus the 

posterior probability of the corresponding word hypothesis, we 

can transform the decoding problem into finding a shortest path 

in the word lattice. Here the length of a path is the average 

length of its links, not the sum of the length of its links, as 

commonly defined in Graph Theory, so we cannot use any 

standard shortest-path graph algorithm. 

Algorithm description: 

Step-1. Use forward-backward algorithm to calculate link 

posterior probability for each link in the lattice; 

Step-2. Topologically sort the nodes of the lattice as defined in 

section 3. For each node u, set d0(u)=0, di(u)=  and 

i(u)= -1. for i=1. . . m, where m equals the largest 

number of links of a path in the lattice; 
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Step-3. For each node u taken in topologically sorted order, 

Do for each link ev->u

Do for i=0 to m-1

If
1i

)p(ei*(v)d uv-i >di+1(u)

then  set  di+1(u) = 
1i

)p(ei*(v)d uv-i

i+1(u) =v; 

Step-4. Select n to maximize dn(ue) for the end node ue. Then n 

is the number of links of the shortest path. 

Here a topological sort of a DAG G is a linear ordering of its 

nodes such that if G contains an edge eu->v, then u appears before 

v in the ordering. As said above, nodes of word lattice are 

naturally sorted in order of increasing t(ni), so the sorting 

operation in step-2 is not needed, in general. 

The node sequence u0= 1(u1), . . ., un-1= n(un), un=ue defines

the  best path that minimizing the expected word error rate 

E(
n

1 L(W, R)).

The time complexity of the shortest path search algorithm is 

also O(T), where T is the number of links in the lattice. 

5. EXPERIMENTAL RESULTS

Experiments were conducted on the Switchboard 2001 HUB- 5 

Corpus. HTK toolkit was employed to generate 310 word 

lattices for a test set of 310 sentences, by using triphone acoustic 

models and bigram language models. The acoustic models were 

provided by ISIP and language models by SRI.  

Table 1.  Comparison of execute time for word hypothesis 

generation with different lattice sizes. 

Execution Time(× real time) 

Average number of links/lattice Method

0-1k 1-2k 2-4k 4-6k- 6-8k 8-10k

MBS-CN <0.0

1

0.05 0.1 0.15 0.4 0.6 

Proposed-

CN

<0.0

1

0.06 0.07 0.08 0.08 0.09

Proposed

shortest

path

<0.0

1

0.02 0.02 0.03 0.03 0.03

A comparison of execution time of word hypothesis sequence 

generation among the proposed CN algorithm, the shortest path 

search algorithm and MBS-CN is shown in Table 1. The 

evaluation result of Table 1 was obtained by running the three 

algorithms on a 2GHz Pentium-4 processor and the results were 

averaged over the test set. Because MBS-CN was extremely 

slow, we pruned 95% of the links for MBS-CN, but pruned none 

for proposed CN and shortest path search. As such, the number 

of links for MBS-CN was actually 0.05×links/lattice for each 

case of links size in Table 1. From the table we observe that 

when the number of links per lattice was small, the three 

algorithms all run very fast. With the lattice growing larger, 

especially when number of links was larger than 6k, the MBS-

CN algorithm required more than 0.4×real time. As a contrast, 

the proposed algorithms both required much less time, less than 

0.1 real time. 

Table 2.  Comparison of decoding results of different methods. 

Method Word Error Rate(%) 

HTK’s one-best 47.57 

MBS-CN 47.17 

Proposed-CN 47.01 

Proposed shortest path  47.30 

Recognition word error rates were further compared across the 

three algorithms and the results are shown in Table 2. The 

results indicate that the expected word error rate minimization 

indeed yielded lower word error rate than sentence error 

minimization (the case of HTK’s one-best), and the two 

confusion network methods were better than the shortest path 

method due to CNs’ better utilization of competing path 

information in word lattice.  

6. CONCLUSION

In this paper we proposed an improved confusion network 

algorithm that requires significantly less computation time and 

has a better capability of alignling long links as compared with 

the previously proposed MBS-CN algorithm. Wd also proposed 

a shortest path search algorithm that can produce word sequence 

hypothesis directly from word lattice with the property of 

minimizing expected word error rate. The effectiveness of the 

proposed techniques has been demonstrated on the Switchboard 

database.
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