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ABSTRACT

This paper describes the use of several advanced acoustic mod-
eling techniques for the 2004 CU-HTK large vocabulary speech
recognition systems. These techniques include Gaussianization for
speaker normalization, discriminative Cluster Adaptive Training
(CAT), Subspace for Precision And Mean (SPAM) modeling of in-
verse covariances, and discriminative complexity control. Acous-
tic models featuring these techniques were integrated into a state-
of-the-art 10 real-time multi-pass system with sophisticated adap-
tation for performance evaluation. Experimental results are pre-
sented on both broadcast news (BN) and conversational telephone
speech (CTS) transcription tasks.

1. INTRODUCTION

For many years automatic transcription of broadcast news (BN)
and conversational telephone speech (CTS) data have been the two
main tasks for the research community of large vocabulary contin-
uous speech recognition (LVCSR). Due to the difficulty of these
tasks, a variety of modeling techniques have been developed to
make these systems able to model more complex data and more
robust to changes in acoustic environment. In this paper several
advanced modeling techniques are investigated in the framework
of a state-of-the-art multi-pass LVCSR system using sophisticated
adaptation, large scale language models and Confusion Network
(CN) based system combination. By implementing the approaches
in this complex framework, it is possible to obtain a realistic com-
parison of how they may work in an evaluation style system. Tech-
niques investigated include Gaussianization for speaker normal-
ization, discriminative Cluster Adaptive Training (CAT), Subspace
for Precision And Mean (SPAM) modeling of inverse covariances,
and model complexity control.

The rest of the paper is organized as follows. Section 2 de-
scribes the four acoustic modeling techniques examined. Section 3
gives an overview of the basic features of the CU-HTK 10xRT
system. Then experimental results of individual and combined
systems on both BN and CTS transcription tasks are presented.
Section 4 is the conclusion.

2. MODELING TECHNIQUES

This section describes the theory of Gaussianization, CAT, SPAM
and discriminative complexity control. Some implementation is-
sues are also discussed briefly for individual techniques.

This work was supported by DARPA grant MDA972-02-1-0013. The
paper does not necessarily reflect the position or the policy of the US Gov-
ernment and no official endorsement should be inferred.

2.1. Gaussianization

Cepstral mean and variance normalization is a simple speaker nor-
malization scheme. The aim is to transform the distribution of a
speaker’s date to a zero mean and unit variance Gaussian. How-
ever such a simple linear normalization scheme may not be pow-
erful enough to normalize highly non-homogeneous speech data,
such as broadcast news. In this paper a non-linear speaker nor-
malization scheme, Gaussianization, is investigated for both BN
and CTS tasks. The basic idea is to ensure the Cumulative Den-
sity Function (CDF) of each speaker’s data, which is represented
by a Gaussian Mixture Model (GMM), matches that of a Gaussian
distribution. Let oj denote the jth dimension of a n dimensional
acoustic feature vector o of speaker s. Then the Gaussianized fea-
ture on j the dimension is given by,

ǒ
(s)
j = φ−1

⎛
⎝

∫ o
(s)
j

−∞

Msj∑
m=1

csjmN
(
x; µ(sjm), σ(sjm)

)
dx

⎞
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where φ−1(·) denotes the standard Gaussian inverse CDF. The
speaker GMM component mean, variance and prior is denoted by
µ(sjm), σ(sjm) and csjm respectively. For each speaker a total
of n single dimension Msj component GMMs were trained us-
ing Maximum Likelihood (ML) criterion. This scheme provides a
compact and smooth representation of the target distribution, as a
simplified version of iterative scheme proposed in [1]. It may be
viewed as higher order version of cepstral mean and variance nor-
malization. In this work Gaussianization was performed on top of
HLDA projected cepstral features. The normalized features were
then used in both training and testing. All GMMs used for Gaus-
sianization had 4 components.

2.2. Cluster Adaptive Training

Multiple-cluster schemes, such as cluster adaptive training (CAT)
or eigenvoices system, are popular approaches for rapid speaker
and environment adaptation [3]. A multiple-cluster model is used
as the canonical model in an adaptive training framework. A set
of interpolation weights are used to transform this multiple-cluster
model to a standard HMM set representative of an individual speaker
or acoustic environment. Usually only multiple-cluster means are
considered, thus adapted mean vector is represented as

µ(sm) = M(m)λ(s) (2)

where M(m) =
[
µ

(m)
1 , . . . , µ

(m)
P

]
is the multiple-cluster mean

matrix, and λ(s) is the interpolation weight vector.
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Maximum likelihood estimation for the multiple-cluster model
and interpolation weights are investigated in [3]. Initializations of
CAT is also detailed discussed in the paper, which allows CAT
to be used in LVCSR systems. However, to get state-of-the-art
performance, discriminative training, particularly minimum phone
error (MPE) training is required. This has been studied for mul-
tiple cluster systems in [5]. Though both model parameters and
interpolation weights can be discriminatively updated, a simpli-
fied version of discriminative adaptive training is commonly used,
in which ML-estimated weights are fixed in later discriminative
training stage.

In the CU-HTK 10xRT system, a CAT system employs sim-
ilar adaptation procedures to a SAT system. CAT weights are it-
eratively estimated using ML criterion based on supervision from
the previous lattice generation stage. Then given using these trans-
forms, standard MLLR transforms are estimated in a cascade fash-
ion for lattice rescoring.

2.3. Precision Matrix Modeling

Standard GMMs for speech recognition use diagonal covariance
matrices. Structured precision matrix approximations have been
found to yield improved performance using both ML and MPE
training [6, 7]. They yield a compact representation and efficient
likelihood calculation. Examples of this form of model are the
Semi-tied Covariances (STC), Extended Maximum Likelihood Lin-
ear Transform (EMLLT) and Subspace for Precision And Mean
(SPAM) systems. The precision matrix (inverse covariance), P m,
of a Gaussian component m, can be expressed in a general form
of basis superposition:

P m =
n∑

i=1

λ
(m)
ii Si (3)

where Si is the ith basis matrix and λ
(m)
ii is the corresponding

basis coefficient. This form of precision matrix model has been
found to yield the best performance [7].

This paper considers MPE discriminatively trained SPAM mod-
els. Two variants of SPAM models were trained. The first model
was trained within the 39-dimensional HLDA feature space. The
second form of model was built with an adaptively trained feature-
space. Here constrained MLLR was used to generate a standard
ML Speaker Adaptively Trained (SAT) system. Then within the
adaptively trained feature-space the precision matrix models were
built. This is the SAT-SPAM system

One issue with using structured precision matrix models is
that if the adaptation transforms are directly estimated, this can
be computationally expensive, or require numerical optimization
techniques. In this work the efficient adaptation schemes described
in [10] were used. A diagonal precision matrix approximation was
used for MLLR mean adaptation. For constrained MLLR (CM-
LLR), a standard diagonal covariance matrix system was used to
estimate the CMLLR transforms.

2.4. Complexity Control

There are a wide range of possible models that can be used for
LVCSR. One issue is that it is very expensive to build, and com-
pare, each possible system. To overcome this problem automatic
model complexity control schemes may be used. Most existing
complexity control schemes make an assumption that increasing

the likelihood on held-out data can decrease the word error rate
(WER). However this correlation has been found quite weak for
current speech recognition systems. It would be preferable to use
a criterion more closely related to WER. One possible method is
to marginalize a discriminative criterion. However, due to sensitiv-
ity to outliers, discriminative training criteria, such as Maximum
Mutual Information (MMI), can not be directly integrated for com-
plexity control.

To overcome this problem the marginalization of a discrimi-
native growth function has been proposed [11]. Let λ denotes the
model parameters. For a family of discriminative criteria that can
be expressed as a ratio between two polynomials with positive co-
efficients (including MMI and MPE),F(λ) = Fnum(λ)/Fden(λ),
a generic form of the associated growth function is given below.

G(λ) = Fden(λ)
[
F(λ) −F(λ̃) + CFsm(λ, λ̃)

]
(4)

where λ̃ is the current parameter estimate. The first two terms in
the bracket retain the criterion’s curvature in the parametric space.
A third smoothing criterion or statistics, Fsm(λ, λ̃), scaled by a
constant C > 0, acts to remove the sensitivity to outliers by by
penalizing highly unlikely word sequences. The exact form of the
smoothing term depends on the underlying discriminative crite-
rion being considered. Using a generalized EM approach, a strict
lower bound of the growth function can be derived. This has a
more tractable form for marginalization, with the dependence on
the hidden variables removed. A second order Laplace’s approxi-
mation can be used for the growth function integration.

In this paper complexity controlled acoustic models were built
using this marginalized growth function. Two forms of complex-
ity were varied. In contrast to the standard global 39-dimension
HLDA projection, the systems were built with multiple HLDA
transforms, in this case 65, with number of retained dimensions
varied. In addition the number of components per state were var-
ied. Both forms were determined using a marginalized MPE crite-
rion. The BN complexity control system had 16.5 components per
state and 46.3 dimensions per HLDA transform on average. The
corresponding CTS system had 29.9 Gaussians per state and 42.6
dimensions per HLDA projection.

3. EXPERIMENTS AND RESULTS

3.1. Basic Features of CU-HTK Systems

The CU-HTK 10xRT multi-pass system uses sophisticated adapta-
tion and CN based system combination. The overall system struc-
ture consists of two main stages: the initial lattice generation stage
and the rescoring stage using multiple model sets. The confusion
network outputs from different rescoring passes were finally com-
bined. This is shown in figure 1. More details of the overall system
architecture can be found in [2].

For both systems the audio data is parameterized using 13 PLP
features augmented with their first, second and third order deriva-
tives. A 52 dimensional acoustic feature was projected down to
39 dimension using a global HLDA transform. All acoustic mod-
els were built using discriminative training based on the minimum
phone error (MPE) criterion [4]. For the CTS systems only, Vocal
Tract Length Normalization (VTLN) was used in training and test
and Cepstral mean and variance normalization was also applied.
Continuous density, mixture of Gaussians, cross-word triphone
HMM systems were used. Bandwidth-specific acoustic models
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were also built for BN data. In addition Gender-specific BN mod-
els were derived from the gender-independent models. All CTS
acoustic models were gender independent. The two baseline mod-
els sets used in the lattice rescoring stage are a SAT model em-
ploying constrained MLLR and an HMM set trained using a Single
Pronunciation (SPron) dictionary. These model sets were adapted
using lattice based MLLR in addition to standard adaptation only
based on the 1-best hypothesis.

Segmentation

Normalisation
Adaptation

Adapt

Lattices

Lattice generation

Adapt

Initial transcription

P3a P3x

1−best

CN

Lattice

CNC

Fig. 1. CU-HTK 10xRT System

For both BN and CTS tasks a word-based 4-gram language
model was trained on the acoustic transcriptions and additional
Broadcast News data. The word-based 4-gram was then inter-
polated with a class-based trigram trained only on the associated
acoustic transcriptions. The BN and CTS recognition dictionaries
contain approximately 59k and 58k words respectively. Each word
had about 1.1 pronunciations on average for both tasks.

3.2. CTS Experiments

The CTS data set used for training, fsh2004sub, consists of
400 hours of Fisher conversations released by the LDC, with a
balanced gender and line condition [8]. Quick transcriptions are
provided by BBN, LDC and another commercial transcription ser-
vice. Two CTS test sets were used for systems evaluation. A 6
hour DARPA RT-03 evaluation set, eval03, contains 72 conver-
sations from the LDC Fisher collection, fsh, and Switchboard II
phase 5, s25. Another DARPA development set dev04 was also
used, which includes 72 LDC released Fisher conversations. All
CTS models have approximately 6k physical states after decision
tree based tying. The number of components per state is 28 on
average level.

Table 1 shows the baseline performance of the 10 time real-
time CTS system. The 2-way combination between the SAT and

SPron systems was the standard configuration used in the CUED
CTS evaluation system. Significant error rate reduction over indi-
vidual branches was achieved after system combination. The final
error rates were 20.5% on eval03 and 16.9% on dev04.

System
eval03

dev04
s25 fsh Avg

P2-cn HLDA 26.6 18.4 22.6 18.7

P3a-cn SAT 24.5 17.1 20.9 17.3
P3c-cn SPron 24.7 17.6 21.3 17.6

P3a+P3c 23.9 16.8 20.5 16.9

Table 1. CTS 10xRT system baseline performance

Table 2 shows the performances of various systems featuring
techniques described in section 2. The global HLDA system used
for lattice generation was also re-adapted as a rescoring branch.
The Gaussianization (GAUSS) and complexity controlled system
(CTRL) systems gave marginal improvement. The SPAM sys-
tem gave 0.8% absolute improvement on eval03 over the HLDA
baseline. An absolute word error reduction of 0.3% was also ob-
tained on dev04 against the P3b branch. Among all the adaptively
trained systems, the SAT+SPAM outperformed all the other sys-
tems on both test sets. An absolute WER reduction of 0.4%∼0.5%
were obtained on both sets over the SAT branch. The performances
of SAT and CAT systems are very close.

System
eval03

dev04
s25 fsh Avg

P3b-cn HLDA 24.8 17.7 21.4 17.5
P3d-cn GAUSS 24.8 17.5 21.3 17.3
P3e-cn CAT 24.9 17.2 21.2 17.5
P3g-cn SPAM 24.1 16.9 20.6 17.2
P3h-cn SAT+SPAM 23.9 16.9 20.5 16.8
P3i-cn CTRL 24.5 17.5 21.1 17.6

P3c+P3h 23.6 16.4 20.1 16.6
P3c+P3d+P3h 23.6 16.4 20.1 16.5
P3c+P3h+P3i 23.3 16.3 19.9 16.6

Table 2. Extended CTS 10xRT system performance

The GAUSS, SAT+SPAM and CTRL systems were then used
for combination with the SAT and SPron systems. Replacing the
SAT system with the SAT+SPAM branch reduced the error rate
by 0.4% on eval03 and 0.3% on dev04. Adding the GAUSS
system in a 3-way combination with the SPron and SAT+SPAM
branches gave further marginal gain on dev04. Similarly the error
rate on eval03 was reduced by 0.2% using a 3-way combination
by further including the CTRL system.

3.3. BN Experiments

The BN system was trained on 370 hours of training data. This
consists of two parts [9], 140 hours of accurately transcribed broad-
cast news acoustic training data released by the LDC in 1996 and
1997 and 230 hours of data selected from the TDT4 audio corpora
with close-captions based quick transcriptions. All BN models
have approximately 7k physical states after decision tree based ty-
ing. The number of components per state is 16 on average level.
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Three BN test sets were used, each of them contains six 30 minutes
broadcast news shows. The first set, eval03, was the DARPA
RT-03 evaluation data set. It contains shows which were broadcast
during February 2001. Two additional DARPA internal develop-
ment sets, dev04 and dev04f were also used. They contain
shows of January 2001 and November 2003 respectively.

System eval03 dev04 dev04f
P2-cn HLDA 10.8 13.4 20.1

P3a-cn SAT 10.3 12.9 18.7
P3c-cn SPron 10.2 13.0 19.0

P2+P3a+P3c 10.1 12.6 18.6

Table 3. BN 10xRT system baseline performance

Table 3 shows the performance of the baseline BN 10xRT sys-
tem. In contrast to the CTS system, a 3-way combination between
the P2, P3a (SAT) and P3c (SPron) branches was the standard con-
figuration used in CUED BN evaluation system. The final numbers
for each of the tasks was 10.1%, 12.6% and 18.6%, with gains of
0.1% to 0.4% being obtained from system combination.

System eval03 dev04 dev04f
P3b-cn HLDA 10.5 13.1 19.5
P3d-cn GAUSS 10.4 12.8 19.1
P3e-cn CAT 10.4 12.8 19.1
P3g-cn SPAM 10.2 12.7 18.8
P3h-cn SAT+SPAM 10.1 12.5 18.5
P3i-cn CTRL 10.5 12.8 19.3

P2+P3c+P3f 10.0 12.5 18.6
P2+P3c+P3h 10.0 12.4 18.4
P2+P3a+P3c+P3h 10.0 12.4 18.4

Table 4. Extended BN 10xRT system performance

Table 4 shows the performances of various BN systems. The
Gaussianization system outperformed the HLDA system on all
three sets. 0.3%∼0.4% error rate reduction is obtained on dev04
and dev04f. The SPAM system was the best non-adaptively
trained system, by an absolute WER reduction of 0.3%∼0.7%
against the P3b system. Performances of the two SPAM systems
are close. The CAT system consistently outperformed the HLDA
baseline system on all sets, while marginal gain was found over
the SAT system. The gain from the CTRL system over the HLDA
baseline was marginal similar to the CTS experiments in table 2.
The SAT+SPAM system was then selected for combination. Using
the SAT+SPAM branch reduced the error rate by 0.1% on eval03
and 0.2% on both dev04 and dev04f. Unfortunately further in-
cluding the SAT branch in a 4-way combination with the p2, SPron
and SAT+SPAM systems gave the same performance.

4. CONCLUSION

In this paper several advanced acoustic modeling techniques, Gaus-
sianization, CAT, SPAM and complexity control were investigated
for LVCSR training. Performances of individual and combined
systems were compared in the framework of a state-of-the-art 10
time real time system for both BN and CTS data. Experimental

results show that these techniques are useful for further improving
performance of current LVCSR systems.
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