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ABSTRACT

It is well known that combining recognition outputs of mul-
tiple systems using methods such as ROVER or its exten-
sions gives improved performance. However, previous ap-
proaches have been somewhat adhoc. In this paper, we
present BAYCOM, a Bayesian decision-theoretic approach
to model combination that is optimal under given assump-
tions. We present recognition experiments showing that
BAYCOM gives significant improvements over previous
combination methods. In addition, we show that BAYCOM
provides a confidence feature that gives very large improve-
ments over previous methods for utterance rejection.

1. INTRODUCTION

Since the introduction of the ROVER algorithm [1], model
combination has been a popular way to improve recognition
performance for automatic speech recognition (ASR) sys-
tems. Most state of the art research systems use ROVER,
or related techniques like N-best ROVER [2] and Confu-
sion Network Combination (CNC) [3] to combine models
that have been trained in different ways. These methods
use a plurality or confidence-weighted voting mechanism
amongst a set of aligned word hypotheses derived from dif-
ferent systems. While they give good improvements, the
combination approach used by these methods is adhoc and
not grounded in a basic theory of pattern recognition.

In this paper, we motivate model combination from a
Bayesian decision-theoretic viewpoint, and present an algo-
rithm (BAYCOM) that optimally combines different models
under certain commonly made assumptions. In addition to
the recognition hypotheses, BAYCOM uses multiple scores
from each system to make a final decision. BAYCOM
makes no assumptions as to the meaning of these scores, un-
like ROVER-based methods which require each system to
provide a normalized confidence score. Also, unlike these
previous methods, BAYCOM does not require that the indi-
vidual models give similar error rates. Experiments show
that BAYCOM is significantly superior to simple voting
schemes, and also gives a confidence scoring mechanism
that dramatically improves rejection performance.

2. BAYCOM: DECISION-THEORETIC MODEL
COMBINATION

Suppose there are M models, each of which processes utter-
ance x. Let the recognition hypothesis output by model i be
hi(x). Further, model i outputs a set of L scores sj

i (x), j =
1, . . . , L for hypothesis hi(x). For example, the scores may
correspond to the confidence, normalized likelihood, or the
likelihood difference between the top two hypotheses. The
inputs to the model combination algorithm are hi(x), and
sj

i (x), i = 1, . . . , M , j = 1, . . . , L.
We now proceed to frame the problem according to

Bayes decision theory. Let the event h mean “hypothesis
h is correct”, and the set H = {h1, . . . , hM}. Then we
need to compute h∗(x) such that

h∗ = argmax
h∈H

P (h|h1, . . . , hM , S1, . . . , SM ), (1)

where we have removed the dependence on x for ease of
presentation, and Si = s1

i , . . . , s
L
i . We use Bayes theorem

to write the probability term in Equation 1 as

P (h|h1, . . . , hM , S1, . . . , SM )

= P (h)
P (h1, . . . , hM , S1, . . . , SM |h)

P (h1, . . . , hM , S1, . . . , SM )

Ignoring, the denominator, which is independent of h, and
assuming the model hypotheses are independent of each
other, we substitute back in Equation 1 to get

h∗ = argmax
h∈H

P (h)

M∏
i=1

P (Si|hi, h)P (hi|h). (2)

Consider the two disjoint subsets IC = {i : hi = h} and
IE = {i : hi �= h}. Then

P (hi|h) =

{
Pi(C) if i ∈ IC

Pi(E)/N − 1 if i ∈ IE

Here we have assumed that the probability of being correct,
Pi(C) for model i, is independent of the particular hypothe-
sis hi, and that the probability of error, Pi(E) = 1−Pi(C)
is equally distributed over all the N − 1 incorrect hypothe-
ses, where N is the number of possible unique hypotheses.
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Also,

P (Si|hi, h) =

{
P (Si|C) if i ∈ IC

P (Si|E) if i ∈ IE

where P (Si|C), and P (Si|E) are the conditional score dis-
tributions given that the hypothesis hi is correct and incor-
rect, respectively. We have assumed that the conditional
score distributions are determined only by whether the hy-
pothesis is correct or incorrect, and not by the actual hypoth-
esis itself. We can now write the product term in Equation 2
as

M∏
i=1

P (Si|hi, h)P (hi|h)

=
∏

i∈IC

Pi(C)P (Si|C)
∏

i∈IE

Pi(E)

N − 1
P (Si|E)

Multiplying and dividing by ΠM
i=1

Pi(E)
N−1 P (Si|E), we get

M∏
i=1

P (Si|hi, h)P (hi|h)

=
∏

i∈IC

(N − 1)
Pi(C)

Pi(E)

P (Si|C)

P (Si|E)

M∏
i=1

Pi(E)

N − 1
P (Si|E)

Realising that the second term
∏M

i=1
Pi(E)
N−1 P (Si|E) is a

constant, we substitute back in Equation 2 to get

h∗ = argmax
h∈H

P (h)
∏

i:hi=h

(N − 1)
Pi(C)

Pi(E)

P (Si|C)

P (Si|E)
(3)

Taking the logarithm of the right hand side, we get

h∗ = argmax
h∈H

⎡
⎢⎣

log P (h)

+
∑

i:hi=h log Pi(C)(N−1)
Pi(E)

+
∑

i:hi=h log P (Si|C)
P (Si|E)

⎤
⎥⎦ (4)

Equation 4 gives the model combination formula for BAY-
COM. We note several of its desirable properties:

• BAYCOM is a weighted voting scheme with voting
weights given by log Pi(C)(N−1)

Pi(E) + log P (Si|C)
P (Si|E)

• Consider the term log Pi(C)(N−1)
Pi(E) . If a model is al-

ways correct, i.e., Pi(C) = 1, Pi(E) = 0, then its
vote is weighted by ∞.

• If a model is always incorrect, i.e., Pi(C) = 0, then
its vote is weighted by −∞.

• If a model is simply guessing, i.e., Pi(C) = 1
N

, then
its vote is not counted (weight is 0).

• Similar observations can be made about the condi-
tional distributions, P (Si|C), and P (Si|E).

• A tied vote is broken by choosing the hypothesis with
the maximum prior, P (h).

Finally, to mitigate the model independence assumptions
we made, we can multiply the weighting terms by a model-
specific weight, αi, so that

h∗ = argmax
h∈H

⎡
⎢⎣

log P (h)

+
∑

i:hi=h αi log Pi(C)(N−1)
Pi(E)

+
∑

i:hi=h αi log P (Si|C)
P (Si|E)

⎤
⎥⎦ (5)

This weighting is similar in effect to the grammar probabil-
ity weighting used in speech recognition.

In our experiments, each model outputs a semantic hy-
pothesis which corresponds to a meaningful action that the
system can take. For example, “Charles Schwab” may be
the semantic hypothesis corresponding to the sentence hy-
pothesis, “I’d like to connect to Schwab please”. Voting in
our experiments is on these semantic actions. BAYCOM
can easily be extended for improving word error by replac-
ing the voting procedures of ROVER or CNC with that of
BAYCOM. It is also possible to implement BAYCOM at
lower levels, such as the phone level.

3. RELATION TO OTHER METHODS

BAYCOM relates to ROVER [1], N-best ROVER [2], and
CNC [3] in that all are voting mechanisms. While ROVER
combines only a single hypothesis from each model, N-
best ROVER and CNC combine multiple hypotheses rep-
resented as confusion networks. However, all use a sim-
ple confidence weighted voting scheme. By contrast, BAY-
COM derives the optimal combination weight from decision
theory. It properly handles multiple scores of different types
from each model. It makes no assumption as to the meaning
of these scores, instead using the conditional score distribu-
tions to properly weight the votes. ROVER and CNC, on the
other hand, require individual systems to give a confidence
score in the [0− 1] range indicating zero to total confidence
in the recognition hypothesis. Further, BAYCOM does not
require that the individual models have similar error rates,
as opposed to ROVER or CNC, which typically work well
when the individual models have similar error rates.

BAYCOM is also similar to boosting methods such as
AdaBoost [4]. However, boosting uses only the probability
of being correct for each model, whereas our approach also
optimally uses multiple model scores Si = s1

i , . . . , s
L
i for

hypothesis hi.
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4. A POWERFUL NEW CONFIDENCE SCORE

Intuitively, one would expect model combination to also
provide improved confidence scores. For example, if a hy-
pothesis receives a vote from several models, we may want
to assign it a high confidence. A reasonable measure of
this confidence is the posterior probability of the hypothe-
sis given the information contributed by the various mod-
els. BAYCOM provides a natural framework for computing
such a score. From our development in Section 2, we can
write this score as

c(h∗) = P (h∗|h1, . . . , hM , S1, . . . , SM ),

or

c(h∗) = log P (h∗)

+
∑

i:hi=h∗

αi log
Pi(C)(N − 1)

Pi(E)

+
∑

i:hi=h∗

αi log
P (Si|C)

P (Si|E)
(6)

5. EXPERIMENTAL RESULTS

We conduct experiments on a large directory assistance
(DA) task. About 750,000 utterances from the domain are
used to train a set of gender-independent (GI) task-specific
Genone-based hidden Markov models (HMMs) with 2000
Genones. A Genone is the set of Gaussians correspond-
ing to a state cluster [5]. This is our baseline acoustic
model. Two other models are trained on a much larger task-
independent dataset of about 6M utterances that does not
include these 750,000 utterances. The first of these is a sys-
tem that generates n-best lists using a 1000 Genone GI sys-
tem, and rescores these lists using a 2000 Genone gender
dependent (GD) model selected for each utterance based on
a gender classifier. The second model is a 2000 Genone GI
system. All models use 32 Gaussians per Genone. We refer
to the three models as

Baseline : The task-specific acoustic model with 2000 GI
Genones

gd1000 : The task-independent acoustic model with 1000
GI Genones and rescoring with 2000 GD Genones

gi2000 : The task-independent acoustic model with 2000
GI Genones

The BAYCOM parameters, Pi(C), P (Si|C), and P (Si|E)
are trained on a 380,000 in-grammar (IG) subset of the
750,000 utterance training set. The IG set is necessary to
run recognition experiments to estimate Pi(C), P (Si|C),
and P (Si|E). We used a single utterance-dependent score

Si = s1
i in our experiments. This was the confidence score

computed by the Nuance recognition system for each utter-
ance [6]. We modeled P (s1

i |C), and P (s1
i |E) using nor-

malized histograms with 10 bins.
For testing, we used about 50,000 utterances from the

DA task. Our error metric counts the number of semantic
hypothesis errors.

5.1. Comparison to previous voting schemes

We comparedBAYCOM to two common voting approaches.
The first is simple plurality voting, and the second weights
each vote by the raw utterance confidence score. Note that
BAYCOM weights the vote by the logarithm of the ratio
of the confidence score distributions as opposed to the raw
score itself. We also evaluate the effect of adding the prior
term logP (h), and the model specific weights, αi in the
voting formula of Equation 5. The model weights αi are
trained so as to minimize the semantic error on the 380,000
utterance training set. There are about 14000 unique seman-
tic classes with a perplexity of 953, so we used a value of
N = 1000 in our experiments. Table 1 shows that BAY-

Individual Models
Baseline 4.48%
gd1000 7.12%
gi2000 8.58%

Combination of above models
Plurality voting 5.87%
Confidence-weighted voting 4.71%
BAYCOM with no hypothesis prior 4.35%
BAYCOM with hypothesis prior logP (h) 4.03%
BAYCOM with prior and model weights αi 3.91%

Table 1. BAYCOM compared to standard approaches

COM is significantly better than either simple plurality vot-
ing or confidence-weighted voting. In fact, both these meth-
ods were worse than the baseline system, perhaps because
the individual systems had widely varying error-rates. How-
ever, this did not pose a problem for BAYCOM. When we
utilized the prior and model-specific weights, BAYCOM
was 13% better than the baseline.

5.2. Diminishing returns with more models

To evaluate the gains from adding more than one model to
the baseline, we studied the effect of adding gd1000 and
gi2000 in steps. BAYCOM with priors and model weights
is used, and the results are given in Table 2. We see that
most of the gain is achieved by adding a single model, and
only a minor additional gain is gotten from an additional

I - 847

➡ ➡



Model Error Rate Relative
Improvement

Baseline 4.48%
+ gd1000 3.95% 12%
+ gi2000 3.91% 13%

Table 2. Effect of adding models in steps for BAYCOM

model. This result is likely to vary with the choice of in-
dividual models. We have made no attempt to train inde-
pendent individual models, and have focussed instead on
the problem of combination. Boosting methods such as Ad-
aBoost [4] do train the models in a way to achieve more in-
dependent errors, and it would be interesting to incorporate
those schemes with the more general combination approach
presented in this paper.

5.3. Improvements in confidence and rejection

As we noted in Section 4, BAYCOM provides a potentially
powerful confidence score. We evaluated this by computing
the confidence score using Equation 6 for the model combi-
nation schemes studied in Section 5.2. The baseline system
used the Nuance system’s standard confidence score com-
puted as in [6]. Confidence score performance was com-
pared by plotting an ROC curve of the miss rate against
the false accept rate using both in-grammar (IG) and out-
of-grammar (OOG) test data. An IG utterance is one that
can be parsed by the application grammar, and an OOG ut-
terance is one that cannot be. A false accept occurs either
when an IG utterance is incorrectly recognized, or an OOG
utterance is accepted by the system. A miss occurs when
an IG utterance is incorrectly recognized or is rejected. The
miss rate is the same as 1 − correct automation rate. Im-
proving correct automation at low false accepts is an im-
portant measure in applications like directory assistance.

We simulated a 10% OOG rate, and plotted the corre-
sponding ROC curve in Figure 1 for the baseline model and
the two BAYCOM schemes we evaluated in Section 5.2.
This figure shows that BAYCOM gives very large improve-
ments in the miss rate at low false accept rates. For exam-
ple, we get a 43% improvement in the miss rate at 1% false
accept rate.

6. CONCLUSION

We presented a Bayesian decision-theoretic approach to
model combination (BAYCOM), and described its relation-
ship to existing approaches. We conducted comprehensive
experimental studies on a directory assistance task, showing
that BAYCOM was significantly better than standard vot-
ing schemes such as plurality voting or confidence-weighted
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Fig. 1. Miss rate vs. False Accept rate for 10% OOG

voting, and gave a 13% improvement over the baseline task-
specific model. The BAYCOM confidence scoring mecha-
nism gave a 43% improvement in the miss rate at a 1% false
accept rate. In summary, BAYCOM is elegant, theoretically
interesting, and gives very attractive gains.
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