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ABSTRACT
We show that an elaborate linguistic model of a natural lan-
guage can be a valuable knowledge source to improve large
vocabulary continuous speech recognition (LVCSR). Our
approach is to complement a statistical language model with
rule-based linguistic knowledge. A hidden Markov model
based recognizer and an N-gram language model are used
to compute a word lattice which is subsequently processed
by a parser. We succeeded in enhancing recognition perfor-
mance by favouring word sequences which the parser iden-
tified as being grammatically correct.

1. INTRODUCTION

To incorporate knowledge about the structure of language
above word level, most speech recognizers use simple word
order statistics like N-grams. Such models are based on a
notion of language as a linear sequence of words. How-
ever, natural language is more precisely described in terms
of hierarchical structures and dependencies between con-
stituents.

Due to this inadequacy, N-grams tend to perform worse
on German than on English. German has a relatively free
word order, a rich morphology and agreement of case, num-
ber and gender. Whether a word or word form is likely to
occur at a given position in a sentence will often depend on
words which can be located at almost arbitrary positions.
Such dependencies are more adequately modeled by gram-
mar rules than by N-grams. We therefore argue that, at least
for German, rule-based knowledge should be incorporated
into speech recognition. Last but not least such an approach
is supported by the fact that sophisticated and computation-
ally manageable grammars have recently evolved in the nat-
ural language processing community.

Attempts to incorporate rule-based information have
been made mostly in the areas of dialog systems and nat-
ural language understanding. Approaches similar to the one
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described here have been followed in [1, 2], namely the ro-
bust parsing of word graphs. However, these projects aim at
increasing semantic accuracy while our goal is to increase
word accuracy.

In this paper we will describe a method of incorporat-
ing linguistic knowledge into a speech recognizer. Further
we will give evidence that the use of a state-of-the-art gram-
mar formalism can reduce the word error rate (WER). Our
basic assumption is that the utterances to be recognized are
grammatical to a sufficient degree, which enables us to de-
crease word error rate by favouring grammatical phrases.
This assumption holds particularly well for dictation sys-
tems, which is why we chose a German dictation system as
the scenario for our experiments. However, we do not re-
quire that the utterances to be recognized are covered by the
grammar. Rather, the recognizer is supposed to be able to
cope with ungrammatical and unparsable utterances.

Sections 2 and 3 describe how we integrate syntactic
knowledge into our recognition system. The grammar is
discussed in Section 4. We report and discuss our results in
Section 5 followed by the conclusions in Section 6.

2. ARCHITECTURE

We use an architecture which is frequently used in natural
language understanding systems: a word lattice serves as an
interface between an acoustic recognizer and a natural lan-
guage processing module. In our approach, a score derived
from the syntactic structures found by the parser is used to
rescore the word lattice such that grammatical phrases are
slightly favoured.

Initially, the word lattice is produced by a hidden
Markov model (HMM) recognizer with a statistical lan-
guage model. As such lattices can be very large and pars-
ing is an expensive operation, several measures are taken
to keep the computational complexity within reasonable
bounds. During decoding the size of the word lattice is con-
trolled by appropriately setting the beam search parameters.
Once the decoding is complete the lattice size is reduced
by forward-backward posterior pruning. In the resulting lat-
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tice, the same word sequence can be represented by multiple
paths with different acoustic scores due to the uncertainty of
word boundaries in continuous speech. By ignoring acous-
tic scores and timing information we create a word graph
which represents all word sequences of the lattice in com-
pact form and thus can be more efficiently processed by the
parser.

To guide the parser to process the most promising hy-
potheses first, a stack decoder extracts the N best paths from
the recognizer lattice and maps them to the word graph. The
mapped paths are processed step by step. Initially, each
node in the word graph is marked as inactive. To process
a path, all its nodes are activated. A bottom-up chart parser
produces all phrases which can be derived from the active
nodes in the word graph. The phrases which have already
been derived in previous parsing steps are reused for effi-
ciency reasons. This incremental parsing procedure ends if
all N paths are processed or if a timeout occurs.

3. SCORING SYNTACTIC STRUCTURES

The recognizer’s aim is to find the word sequence Ŵ which
was most likely uttered given the acoustic observation O:

Ŵ = arg max
W

P (O|W ) · P (W ) (1)

This is called the maximum a posteriori (MAP) criterion.
However, in practical applications the acoustic likelihood
P (O|W ) and the language model probability P (W ) have
to be balanced to optimize the performance:

Ŵ = argmax
W

P (O|W ) · P (W )λ · |W |ip (2)

λ is the language model weight and ip is the word inser-
tion penalty. We extend the MAP criterion further with an
additional parsing score which allows us to slightly favour
grammatical utterances:

Ŵ = arg max
W

P (O|W ) · P (W )λ · |W |ip · f(W ) (3)

In the remainder of this section we explain how such a score
can be computed. Let W be a word sequence in the lattice
spanning the whole utterance. W can be decomposed into
a sequence U = 〈u1, u2, . . . , un〉 of so-called parsing units
ui. A parsing unit ui represents the word sequence w(ui)
which the parser identified as being grammatically correct.
The decomposition is such that the concatenation w(u1) ◦
w(u2)◦ · · ·◦w(un) = W . Note that for most W there exist
several different decompositions.

We distinguish three types of parsing units. The smallest
unit represents a single word. Units which are larger than
one word but do not span the whole utterance are called
fragment units. A unit spanning the whole utterance is

called an utterance unit. We first define the parsing score
s(·) for a single parsing unit to depend on its unit type:

s(u, W ) =

⎧⎪⎨
⎪⎩

cα if w(u) = W,

cβ if 1 < |w(u)| < |W |,

cγ else

(4)

where cα, cβ , and cγ denote the scores for utterance units,
fragment units and single word units, respectively. The
score of a decomposition of W is

g(〈u1, . . . , un〉 , W ) =
n∑

i=1

s(ui, W ) (5)

The score of word sequence W is the maximal score of all
its valid decompositions:

f(W ) = max
U

g(U, W ) (6)

Note that f(W ) is always defined, even if the utterance is
not fully parsable, because W can always be decomposed
into single word units. Therefore a fall-back mechanism for
unparsable sentences is superfluous.

The parameters λ, ip, cα, cβ and cγ are optimized to
minimize the empirical word error rate (cf. Section 5.1).

4. GRAMMAR

A good grammar should accept as many grammatical word
sequences as possible and at the same time reject as many
ungrammatical word sequences as possible.

Precision is the main requirement of a grammar to be
used in our architecture: it only makes sense to favour the
parsable word sequences if they are very likely to be cor-
rect. Note that since our approach can deal with unparsable
word sequences, there is no need to artificially weaken the
grammar rules.

However, it is also important that the grammar covers
a wide range of syntactic constructions. It is necessary
that the syntactically analyzable parts of the utterance are
as large as possible, since only the words within an ana-
lyzable unit can be constrained. For instance, knowing a
verb’s valency structure allows to constrain the inflectional
endings of its objects (case, agreement of subject and finite
verb). The disambiguation of inflectional endings is impor-
tant since such endings are easily confused by the recog-
nizer. In order to favour a given word sequence for obeying
the valency constraint, the parser has to be able to derive a
unit which contains the verb and all its objects. This in turn
requires that each individual object is fully parsable.

We decided to use the head-driven phrase structure
grammar (HPSG) formalism. HPSG is unification-based
and was developed by [3] to describe natural languages.
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It uses linguistically motivated abstractions which substan-
tially simplify the task of writing precise large-scale gram-
mars. For instance, constituent dependence (immediate
dominance) and constituent order (linear precedence) are
described by two separate sets of rules. This is particularly
convenient for modeling languages with relatively free word
order such as German. Further, HPSG allows to precisely
define the valency structures of verbs.

A practical reason for our choice was that existing sys-
tems like [4] demonstrate that substantial fragments of the
German language can be modeled in HPSG, and that effi-
cient HPSG parsers can be implemented.

We have developed a German grammar which is largely
based on the one proposed by [5]. We omitted some rather
special phenomena and added syntactic constructions ob-
served in the experimental data (e.g. the genitive attribute
and expressions of quantity). The semantical component of
HPSG was discarded as we only focus on grammaticality.

5. EXPERIMENTS

5.1. Training

Continuous density HMMs have been trained by means of
HTK [6] with 7 hours of continuous German speech of
a single male speaker in an office environment with low
background noise and a headset microphone sampled at 16
kHz. The 39-dimensional feature vector consists of 13 mel-
frequency cepstral coefficients (MFCCs) including the 0th
coefficient, the delta and the delta-delta coefficients. The
HMMs are three state left-to-right models with 8 or 32
Gaussian mixtures per state. For each of the 40 phonemes a
context-independent monophone model was trained (called
mono 8 and mono 32). Context-dependent cross-word tri-
phone models were trained as well (tri 8 and tri 32). The
states have been tied using a decision-tree based clustering
according to yes/no questions regarding phonetic context,
resulting in 3355 triphone models.

N-grams serve as statistical language models (LM). The
N-gram probabilities were estimated with the SRI language
modeling toolkit [7] on a 50 million words text corpus (Ger-
man newspaper text and literature) using Good-Turing dis-
counting. The N-grams were estimated for a recognizer
vocabulary of 7k words. There are no out-of-vocabulary
words.

For the recognition experiments we recorded the first
300 sentences of an exercise book containing dictation texts
for pupils in their third year of education [8]. These sen-
tences were partitioned into a development set (200 sen-
tences, 1255 words) and a test set (100 sentences, 637
words). Although these sentences are rather simple, they
comprise a wide variety of grammatical constructions, in-
cluding verbal complexes with up to three verbs, prefix

verbs, coordination of nominal and verbal projections, ex-
traposition and genitive attributes. On the test set, the task
perplexity is 339.5 for the bigram LM and 274.9 for the tri-
gram LM. The sentences in the test set do neither occur in
the acoustic training corpus nor in the text corpus used for
the estimation of the language models.

The lexicon contains a basic set of closed-class words
and those open-class words occurring in the development
and test set, which amounts to about 7’000 full word forms
in total. The open-class words include about 200 verbs, 340
nouns and 90 adjectives. For each verb, the possible valency
structures (800 in total) have been determined using several
sources independent of test set and development set [9, 10].

The parameters λ, ip, cα, cβ and cγ introduced in Sec-
tion 3 are optimized on the development set to minimize the
empirical word error rate. Because the word error rate is not
a continuous objective function, gradient descent methods
cannot be applied directly. The downhill simplex method
known as amoeba search (a multidimensional unconstrained
nonlinear minimization algorithm) is applied instead [11].

The development set was also used to manually choose
the beam search and posterior pruning parameters. The pa-
rameters were set to values which substantially reduce the
lattice sizes and at the same time yield a reasonably high
lattice accuracy. All optimizations are done for each HMM
set (mono 8, mono 32, tri 8, tri 32) individually.

5.2. Testing

The HTK decoder performs a time synchronous Viterbi
beam search storing the 5 best tokens per HMM state. The
recognition network is a back-off bigram word-loop. The
resulting lattices are rescored with the trigram language
model and posterior pruning is applied. The 100 best scored
recognizer lattice paths are processed by the incremental
parser as described in Section 2. The parsing timeout was
set to one minute on a 1 GHz UltraSPARC IIIi processor.
Finally, the optimal word sequence is extracted by combin-
ing acoustic, language model and parsing scores.

5.3. Results and discussion

The relative reduction of the word error rate using the parser
in addition to the trigram language model was 48.6% in the
best case and 28.9% in the worst case. The detailed results
are given in Tables 1 and 2. The word error rate was consis-
tently decreased for all acoustic models. Despite of that, not
all improvements are statistically significant. We are cur-
rently expanding the size of our test and development sets
to tackle this issue.

Our basic assumption was that the utterances to be rec-
ognized have to be grammatical to a sufficient degree. This
assumption holds well for our experiment since most sen-
tences in the test and development sets are covered by our
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WER mono 8 mono 32 tri 8 tri 32
no LM 19.94 13.97 10.68 8.79
+ bigram 7.22 5.65 3.61 2.35
+ trigram 5.97 5.81 2.35 1.88
+ parsing 4.24 2.98 1.57 1.26

Table 1. Word error rates in percent measured for different
acoustic models and language models.

model rel. ∆WER
mono 8 -28.9%
mono 32 -48.6%
tri 8 -33.3%
tri 32 -33.3%

Table 2. Relative reduction of the word error rate on the
test set due to extending the MAP criterion with a parsing
score.

grammar. Yet there is still room for improving recognition
performance: the parser sometimes does not arrive at pro-
cessing the correct utterance because parsing is stopped due
to a timeout. Timeouts are quite frequent, as parsing effi-
ciency is still a major problem. We expect to decrease the
word error rate further by improving the performance of the
linguistic subsystem.

However, sometimes the criterion of grammatical cor-
rectness is not discriminative enough. Word lattices of-
ten contain several grammatically sound utterances. If a
grammatically correct utterance is ranked before the cor-
rect utterance, the latter will not be chosen. For example,
the acoustic recognizer sometimes confuses different verb
tenses, which usually does not affect grammaticality.

6. CONCLUSIONS

We have given evidence that rule-based knowledge captur-
ing the structure of natural language can be a valuable in-
formation source complementary to N-grams. The addi-
tional score derived from the syntactic structures consider-
ably decreased the word error for all acoustic models. To
our knowledge, a comparable reduction of the word error
rate due to applying a parser has not yet been reported for a
similar task.
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