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ABSTRACT

We propose a method to estimate the short term predictor (STP)

and the long-term predictor (LTP) under noisy conditions. We 

assume the speech signal to be a single, dual or triple frame

asymptotic mean stationary  process. The a priori STP parameter

distribution is represented as databases sampled from the speech

training data. Stochastic integration is used to obtain the 

minimum mean square error estimates of the STP parameters.

After computing the STP parameters, the LTP parameters from a 

database of pairs of taps and excitation variances are matched,

together with the lag, using a likelihood criterion, to the noisy

speech. The estimated STP and LTP parameters are also applied

to obtain clean speech estimates by means of a Wiener or a

Kalman filter. For car noise with an SNR  of -5dB, the proposed

enhancement method gives a Mean Opinion Score of 3.3 as

measured using the Perceptual Speech Quality Measure software.

1. INTRODUCTION

Speech enhancement methods are commonly based on speech

models that have been determined from training data. In this

paper, we propose a low complexity method of estimating the

long-term predictor (LTP) under noisy condition. We show that

adding the LTP provides significant gain of enhanced speech

overall quality.

Speech models with a short-term predictor (STP) are relative

simple and accurate, so they are attractive also for speech

enhancement, as is reflected by the large number of publications

in this area, e.g., [1], [2]. Though the estimation of the STP

parameters and speech based on this model is relatively well

understood (despite some open questions), it is known that usage 

of an autoregressive (AR) STP model only does not provide 

satisfactory clean-speech estimation accuracy. However, the

estimation using a combined LTP and STP was addressed only in

a few papers, e.g., [3]. Thus, the main goal of this paper is to

compare the performance when using the STP in combination

with the LTP against using only the STP. We also attempt to

quantify performance of the proposed methods depending on the 

sample size of the STP and LTP parameters. The main difference

compared to the method of [3] is that we estimate STP and LTP 

with a priori knowledge and apply some simplifications to make

estimation computationaly feasible. We also use results of [4],

which introduces a Kalman smoother involving a combined LTP

and STP and shows that adding an LTP brings significant gain of

speech quality. The difficulty when dealing with the combined

LTP and STP model is the costly evaluation of the likelihood

function of the parameters (the conditional probability of the

noisy observation given parameters). The only method to

accomplish exact likelihood evaluation with the combined LTP

and STP parameters currently known is based on Kalman

recursions, a method that is computationally complex since we 

need to handle the state error covariance matrices of size

 (quadratic matrices), where  is the

maximum pitch lag possible,  is the STP order, and q  is the

noise AR model order.
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To estimate the LTP efficiently, we rely on an approximate

likelihood maximization over a random codebook of LTP taps

and excitation variances as well as LTP lags. The approximation

applied is that the LTP parameters change once per frame (in

speech coding they change once per subframe) and that the

likelihood function is computed as if the frame length is infinite.

Another introduced simplification is that we first estimate the

STP with the assumption that the short-term residual is Gaussian

and then use the resulting STP parameters to estimate the LTP.

The latter simplification significantly reduces the computational

complexity compared to simultaneous integration over the LTP

and STP parameters space especially if dual or triple frame

segments are taken into account. While estimating the LTP, we

assume that the long-term residual is Gaussian distributed. It is

likely that this simplification does not impair the performance

significantly. Our methods have similarities to those used in

speech coding. In speech coding the STP is also  estimated first

under assumption that the excitation is Gaussian and then the

LTP is estimated from the short-term residual. The joint

optimization of STP and LTP was shown to provide no

advantage [5].

In this work, we assume that the noise can be described by a

slowly varying AR model. To estimate the noise AR parameters

we rely on the minimum statistics algorithm of Martin [6].

The main goal of the paper is to show that it is possible to

devise a combined LTP and STP estimation algorithm for noisy

conditions that provides a clear advantage over enhancement

based on the STP only. A secondary goal is the examination of

the importance of the sample size of the STP parameters used for 

stochastic integration and the number of frames used for MMSE 

estimation in the LSF domain.

2. ESTIMATION OF THE STP 

We estimate the STP and LTP parameters sequentially. In this

section, we describe the estimation of the STP parameters, using

a method similar to that presented in [7].

The observed noisy signal frame sequence  is given by:( ){ m
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 are statistically

independent speech and noise random vectors corresponding to

the m ’th noisy speech signal frame of length N ,  and  are

speech and noise samples at time instant t , and S denotes the

delay between the consecutive frames and is less than N . 

ts tn

From our asymptotic mean stationarity (AMS) assumption, we 

have existence of ,  and 

where  is the triple frame

segment,  is the dual frame segment. The

single, dual and triple frame segments of the noisy speech are

defined analogously. Let  be the vector of the STP

parameters in the m’th frame containing the excitation variance

of the STP synthesis filter and p STP coefficients in the LSF 

form,  be the joint parameter vector in two consecutive

frames and  be the joint parameter vector in three

consecutive frames. The LSFs possess the property that all 

minimum phase AR polynomials result in a vector of

increasingly ordered LSFs coefficients  [8]. It 

is obvious that any linear combination of the ordered LSF vectors

is also ordered. This is a desirable property as the MMSE 

estimate is computed through linear combination of a set of the

LSF vectors taken from the parameters region of support and the

property assures the estimated synthesis filters to be stable. Since

the parameters are obtained through a deterministic 

transformation from the space of speech segments they inherit

the probability densities and hence we have the existence of the

densities ,  and . We assume

that noise parameters are known (estimated in our 

implementation by the minimum statistics method [6]) and equal 

. The computation of  is based on the Gaussian 

assumption and the circulant approximation of Toeplitz matrices

and other properties of the circulant matrices, see [9] and [10].

The MMSE estimation of the STP parameters is, for the single 

frame estimation
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for the dual frame estimation 
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To evaluate the expressions for the MSEE, we rely on the law

of large numbers and on Bayes rule. We collect a data base with

 entries for the single, dual and triple STP parameters

distribution, using the autocorrelation method of linear prediction

applied to the clean speech. The sampling is performed by

randomly selecting (uniform distribution) speech segments from 

a large database containing over  frames. The elements of the

sample are denoted as , where  is either a single ( ,

dual  or triple frame  indicator.

The parameter estimates are computed as:

M
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where the last equality follows from the application of Bayes

rule. After estimating the STP parameters using these formulas,

we take the estimated STP parameters for the m’th frame and 

proceed to the estimation of the LTP.

3. ESTIMATION OF THE LTP 

The combined LTP and STP transfer function is

1

1
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s
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where  is the excitation standard deviation of the cascade of

the LTP and STP, b  is the LTP tap,  is the LTP lag,

 are the STP coefficients and  is the STP order. 

s
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3.1 Preparation of the LTP parameters database

To estimate the LTP we first sample from the speech training

set the LTP tap and excitation variance. We choose randomly a

single frame from the training set. We then compute the STP

parameters for this frame. Next, we perform analysis filtering of

that frame with the zero initial conditions of the analysis filter

and get the short-term residual. Extending the short-term residual

by zeros at the beginning we perform, once per frame, the open-

loop estimation of the LTP. The outlined procedure is repeated K

times to collect a sample of the LTP taps and excitation standard

deviations , .( ), ( )sb i i 1,...,i K

3.2 Estimation procedure 

Let  be the speech AR coefficients

vector in the m’th frame obtained during STP estimation and

 be the noise AR coefficients vector in

the m’th frame, which is known (in our implementation estimated 

by minimum statistics approach [6]) and  be the standard

deviation of the noise AR synthesis filter excitation also assumed

to be known. Let us denote by
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is the speech model spectrum. Using this notation, the

estimation proceeds as follows: 

for min max,...,   (LTP lags)L L L

for 1,...,  (pairs of LTP taps and excitation variances)i K
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end

The algorithm searches for the maximum of the likelihood

function. The obtained maximum is global over the discrete set. 

The method assumes the excitation of the speech model from (6)

to be i.i.d. Gaussian and that the circulant approximation to the

Toeplitz matrices is sufficiently accurate. The initial condition for 

each frame is set to zero. In practice, the method selects the L ,

 and  that maximise .( )b i ( )s i ,L iD

4. SPEECH ENHANCEMENT USING WIENER

FILTER OR KALMAN SMOOTHER 

We performed experiments with a Wiener filter and a Kalman

smoother. First we review the Wiener filtering method. Denote 

the estimated speech model spectrum, as given in the previous

section, as . The periodogram of the estimated speech is:ˆ( )sf k

2
2 2

2 2
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The spectrum of the estimated speech frame is synthesised using

the phase spectrum of the noisy frame, that is: 

ˆ ˆ( ) ( ) exp ( )rS k S k i f k . (11)

The estimated speech m’th frame is given by the inverse DFT:
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Note that the segments of the estimated speech overlap on the

frame boundaries on the time segment equal O N .

Hence, the estimated speech segments are weighted using a half

of  cycle at the beginning and a half of  cycle at the

end before the overlap-add.

S

2sin 2cos

The Kalman fixed lag smoother computes clean speech

estimates according to the following prescription:

. (13) 
max max 1ˆ | , ,...t tt L p t L p

s E s r r

The parameters from the m’th frame are fed into the Kalman

smoother for ( 1) 1,...,( 1)
2

O
t m S m S N

2

O
.

Details about how to perform the Kalman smoothing with the

combined LTP and STP are contained in [4].

5. EXPERIMENTAL STUDY 

The first set of experiments was aimed at finding the 

dependency between length of the segments (single, dual or

triple, cf. section 2.), sample size (parameter M, cf. section 2.)

and the accuracy of the AR parameters estimation as measured

using the root mean spectral distortion (SD). The experiments

were done for a benchmark file of speech mixed with vehicle

noise (Volvo noise taken from the NOISEX-92 database) at

-5dB. We chose car noise for the experiments since the car

application generally allows for higher computational

complexity.
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Figure 1. Unnormalised spectral distortion (comparing spectral shapes 

and the excitation variances) depending on the length of the segments and

the sample size used to average the MMSE estimates.
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Figure 2. Normalised spectral distortion (comparing only the spectral

shapes) depending on the length of the segments and the sample size used 

to average the MMSE estimates.
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Figure 3. SNR of the enhanced sequence, obtained at fixed K=500,

depending on the length of the segments and the sample size used to 

average the MMSE estimates. The Wiener and Kalman filter uses the 

STP parameters computed according to the recipe from the Section 2. 

We used a frame length N = 256 and a step size of S =236. The 

test sequence was 12.5 [s] containing speech material outside the

training set. The sampling frequency was 8 kHz. The training set 

was the TIMIT database. To compute the SD we used only 

frames with a mean power larger than 15dB  below the mean

power of the entire test sequence (the test sequence had pauses

between sentences maximally of the length of 0.2 [s]). We
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excluded the silent frames since these contribute much to the SD

but are not significant to perception. Due to limitations on

computing time we did not test the dual frame estimation for

sample size larger than M = 500000 and the triple frame 

estimation for sample size larger than M = 300000. We did not, 

for the same reason, average the results over several collections

of samples.

The SNR and PSQM results were obtained for a fixed size, K = 

500 (we recall that K is the number of pairs of the LTP taps and

long-term residual variances over which the likelihood was 

maximized), of the LTP parameters sample. Before computing

the PSQM scores, we filtered the test sequence and the enhanced

files with a high pass filter with a cut-off frequency of 110 Hz. 

The yellow line in Figs. 3. and 4. shows the result of the best

performing Wiener filter with the STP speech model estimated as

in the Section 2. The remaining lines are obtained with the

combined LTP and STP speech model.
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Figure 4. PSQM measurements, obtained at fixed K=500, depending on

the length of the segments and the sample size used to average the

MMSE estimates. The Wiener and Kalman filter uses the STP parameters

computed according to the recipe from the Section 2.

To determine the performance of the proposed algorithm as a 

function of the size of the LTP parameters sample, we ran

experiments with fixed M = 50000. The results are shown in the 

Fig. 5. 

We also measured the SNR and PSQM performance for a

spectral subtraction algorithm and a standardized EVRC noise 

suppression system [11]. The results are summarized in Table 1.

It is seen that our method provides 0.7 improvement on the MOS 

scale over the EVRC noise suppression.
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Figure 5. PSQM (left scale, green line, circles) and SNR (right scale,

blue line, crosses) measurements depending on size of the LTP

parameters sample K.

Table 1. Performance measurements for some other speech enhancement

systems. All results was obtained from the same -5dB, speech mixed with 

vehicle noise, input sequence.

SNRout [dB] PSQMout [MOS]

Spectral subtraction 6.1 1.83

Ramabadran, see [11] 6.2 2.58

6. CONCLUSIONS

We observed a significant gain in the enhanced speech quality

when using a combined LTP and STP model over using only an

STP model. In terms of PSQM measurements this improvement 

is 0.3 on the MOS scale and informal listening tests confirm this 

result. Conditioning of the STP estimation using neighboring

frames is advantageous only for unnormalized SD measurements. 

This result implies that the excitation variances of the triple-

frame STP model were obtained with higher accuracy than those

of the single-frame estimation scheme. The spectral shapes were

estimated with higher accuracy with the single frame STP model.

One of the main results of our investigation is that adding context

to the STP estimation does not provide better estimation accuracy

(at least for the sample size used in our experiments).

Increasing the sample size M over M = 100000 does not result 

in a significant gain of quality as measured using PSQM. An 

increase of the LTP parameters sample size K gave little or no

improvement in PSQM and SNR. A related issue is that our

method, despite good PSQM scores, currently introduces some 

impulsive distortions. These distortions occur locally in the

enhanced files and do not affect the PSQM measurements

significantly but are annoying. The distortions result from

misestimated LTP parameters. These results are consistent with

the block size of the LTP being a limiting factor. We plan to

eliminate the problems by introducing improved LTP modelling.
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