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ABSTRACT 

Codebook searches in analysis-by-synthesis speech coders 

typically involve minimization of a perceptually weighted 

squared error signal.  Minimization of the error over 

multiple codebooks is often done in a sequential manner, 

resulting in the choice of overall excitation parameters 

being sub-optimal.  In this paper, we propose a joint 

excitation parameter optimization framework in which the 

associated complexity is slightly greater than the 

traditional sequential optimization, but with significant 

quality improvement.  Moreover, the framework allows 

joint optimization to be easily incorporated into existing 

pulse codebook systems with little or no impact to the 

codebook search algorithms. This technique is part of the 

3GPP2 Source-Controlled Variable-Rate Multimode 

Wideband Speech Codec (VMR-WB) Rate Set 1 

Standard.

1. INTRODUCTION 

Algebraic Code Excited Linear Prediction (ACELP) [3], 

which is used in many speech-coding standards, solves the 

inherent time complexity issues of a family of analysis-by-

synthesis based Code Excited Linear Predictive (CELP) 

speech-coders.  In typical CELP coders, the synthetic 

speech is obtained by passing a synthetic excitation vector 

through a linear prediction filter.  The excitation vector is 

the gain scaled sum of an adaptive codebook (ACB) 

excitation and a fixed codebook (FCB) excitation. The 

gain associated with ACB excitation and FCB excitation 

are called ACB gain and FCB gain, respectively. The 

ACB excitation is obtained from the past excitations using 

a delay parameter which may have sub sample (fractional) 

resolution.  As described in [4], a multi-tap filter applied 

to the sub-sample resolution ACB excitation vector frees 

the modeling of delay from the multi-tap filter and hence 

provides better spectral shaping to the ACB excitation. 

One can also view ACB excitation generated using the 

multi-tap filter approach as ACB excitation being 

generated as a weighted sum of more than one ACB 

vectors. In the subsequence, we will be using terms like 

multi-tap filter weights or ACB gains to describe these 

weights.   

        The FCB excitation is obtained from searching a 

stochastic codebook. The sequential search process first 

finds the best excitation candidate vector from the 

adaptive codebook and computes multi-tap filter taps.   

The parameters (gain and the code vector index) for the 

fixed codebook are obtained only after the parameters for 

adaptive codebook have been found and the contribution 

of the adaptive codebook has been subtracted from the 

weighted speech.  Ideally, all the parameters (ACB as well 

as FCB) should be obtained jointly, but the computational 

complexity generally prohibits such an optimization. 

        In [1,2] lower complexity joint codebook 

optimizations have been proposed.  In these approaches, 

the codebook search methods start with a primary search 

to obtain the adaptive codebook parameters and then fix 

the adaptive codebook excitation vector (but not the gain) 

to obtain both adaptive and fixed codebook gains and the 

fixed codebook excitation. It was also shown in [1] that 

using such a joint optimization rather than a complete joint 

optimization (including the adaptive codebook excitation) 

does not result in significant loss of speech quality.  The 

drawback of the method proposed in [1] is that it is at least 

30% more complex than a similar sequential optimization, 

and it cannot be readily incorporated into existing FCB 

search techniques. Furthermore, it cannot be easily 

extended to include the weights of the multi-tap filter 

when the filter order is more than one. 

        In this paper, we propose a very low complexity joint 

FCB excitation, FCB gain, and multi-tap filter weights 

optimization by modification of the correlation matrix 

used in the standard sequential FCB search methods.  The 

modification of the correlation matrix enables use of 

standard FCB search algorithms for the joint optimization. 

2. JOINT OPTIMIZATION  

Let L be the subframe length, n (n < L) be the multi-tap 

filter order, i, ni1  be the filter weights, and 
i

c , ni1  be the ACB vectors. Let H1 and H2 be the 

matrix representation for the weighted synthesis filters for 
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ACB excitation and FCB excitation, respectively. Note 

that the weighted synthesis filter for ACB excitation and 

FCB excitation are considered to be different as the 

weighted synthesis filter for the FCB excitation may also 

include a pitch sharpening filter. The ACB excitation c

is given by:  

n

i

i
i

1

cc                                   (1) 

and the weighted synthetic contribution from the ACB is 

given by: 

n

i

i
i

1

yy (2)

where ii cHy 1 .

        Let kc  be the FCB excitation and �  the FCB gain. 

Define kk cH  y 2 , n...    yyyY 21 ,

k YyY , n���...B 21 ,  and B� .

        Let wx  be the weighted target after the zero input 

response of the weighted synthetic filter has been removed 

from the weighted speech. The squared error, which needs 

to be minimized, is now given by: 
22

2 kwkw yBYxcHyx            (3) 

where B  is the transpose of B . In the typical sequential 

optimization, 
i

c and i are first obtained to minimize 

assuming 0�
.  It can be derived from Eq. 3 that  

wxY)YY(B 1                            (4) 

Now for the FCB search 
2

22

2

kkw cHxyBYx ,            (5) 

where BYxx w2 . The optimal FCB excitation is 

obtained using: 

kk

k

k
k

cc

cd
*

2

argmax                           (6) 

where 22 Hxd  and 22HH .

        Let us look at the joint optimization now. Rewriting 

equation (3), we get: 
2

Yxw (7)

From Eq. 7, to minimize ,

wxY)YY( 1                               (8)

Substituting this value of in (7), results in 

wwww xY)YYY(xxx 1 (9)

Thus minimizing  is equivalent to maximizing 

ww xY)YYY(x
1

                          (10) 

Define .xYr,xYrYYRYYR ww and�����

Also define kkkkkR ccyy ,
kyYu . Now Eq. 10 can 

be written as rRr
1

. In a strict sense, this represents the 

composite joint optimization of ACB and FCB excitation 

vectors and their gains.  In practice, however, this joint 

optimization is prohibitively complex.  As a simplified 

alternative, we assume that the ACB excitation vectors 
i

c

are determined a priori, and the remaining parameters ck,

i, and �  are determined in a jointly optimal fashion. 

        So, moving back to Eq. 10, we begin by expanding 

and eliminating terms that are independent of ck.  We start 

by inverting the inner matrix YYR . It can be verified 

that the inverse of R is given by  

Qb

b
R

a1
                              (11) 

where u)Ru/(
1

1
-

kRa , uRb
1-a , and  

111 --- a RuuRRQ .  Expanding Eq. 10, we get 

----
kwkw aaa rRuuRrrRruRuyxyx(

1111
2)

2 ,        (12)

which needs to be maximized to get ck.

        Since -
rRr

1 is dependent only on ACB excitation 

vectors, the synthesis filter and the weighted target, the 

term is constant during the optimization process. Thus, the 

above term can be removed from Eq. 12 to get 
21

argmax u)Rryx(
* -

kwa
k

k ,                   (13) 

      
uRu

u)Rryx(
1

21

argmax
-

k

-
kw

Rk
                 (13a) 

Now, we will show that the parameters of the joint 

optimization can be transformed to the two pre-computed 

parameters of the sequential FCB optimization thereby 

enabling a sequential FCB search algorithm to be used for 

joint optimization.  The two pre-computed parameters are 

the correlation matrix and the reverse filtered weighted 

target signal.  Consider the sequential search based CELP 

coders.  Referring back to Eq. 6, the numerator is the 

square of the dot product of FCB vector and a vector 

independent of k, and the denominator in a form k
T
k cc ,

where  is a matrix that is also independent of k. We will 

now modify Eq. 13 so that it can also be written in the 

same form as Eq. 6.  

        Let us look as the numerator of Eq. 13a.  
21

)uRry(x
-

kw
                         (14) 

2
)yBy( Yx kkw

                   (14a) 

2

2 )y(x k
                                  (14c) 

2

22 )cH(x k
                             (14d) 

2
)cd( k

                                    (15) 
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Comparing Eq. 15 and Eq. 6, we see that the numerator of 

both Eq. 6 and Eq. 13a are identical.  

        Now we move to the denominator of Eq. 13a.  As in 

the numerator discussion above, we would now like to put 

the denominator in a form that is similar to that of the 

denominator of Eq. 6.  Without loss of generality, we can 

assume that the filtered ACB excitations, 
ii

cHy 1 , are 

orthogonal. If they are not orthogonal, these can be easily 

orthogonalized by Gram-Schmidt orthogonalization 

process. Since the orthogonalization does not change the 

linear span of
i

y , there is no effect on the overall ACB 

contribution y .

      Note that the above assumption makes R� a diagonal 

matrix. Let iR  be the diagonal elements. Now the 

denominator of Eq. 13a becomes 
n

i
i

i
k

kk
R1

2)( yy
cc                                (16) 

n

i
i

i
k

kk
R1

2
2

)( yHc
cc                         (16a) 

Now define i
i yHz 2 as the vectors obtained from 

backward filtering of the filtered ACB excitation vectors. 

Thus the denominator in Eq. 13 can be written as:  

k

n

i
i

ii
k

R
c)

zz
c

1

(                                 (17) 

The denominator in Eq. 13 can also be written in the 

form kk c
~

c , where 
n

i
i

ii

R1

zz~
. Hence  

kk

kk
c

~
c

cd*
2

k
argmax                              (18) 

Since the form of Eqs 6 and 18 are generally the same, the 

terms d  and 
~

 can be pre-computed, and any existing 

sequential optimization algorithm may be transformed to a 

joint optimization without modification to the search 

algorithm 

        Going back to Eq. 18, if the vector Y  = 0, then the 

expression for the joint search would be equivalent to the 

corresponding expression for the sequential search.  This 

implies that we can easily adaptively choose to do 

sequential search whenever needed. 

      An optimization expression in Eq. 6 and Eq. 18 

requires many comparisons of type p/q < r/s. In a typical 

digital signal processor, a multiply has a much lower 

complexity than a divide. Hence, an equivalent 

comparison of the form p·s<r·q is preferred. This requires 

that the denominators q and s should have the same sign 

(either positive or negative). It can be verified that the 

numerator and denominator in Eq. 6 are non-negative. 

      Since a is a diagonal element of the inverse of a 

symmetric positive definite matrix R (inverse is also 

positive definite), it cannot be negative. Thus, the 

denominator (1/a) is Eq. 18 is also non-negative. 

Therefore, the equivalent comparisons p·s<r·q can be 

performed. 

2.1. Complexity 

Since the numerator in both Eq. 6 and Eq. 18 are identical, 

the complexity increase is only from the calculation of the 

denominator. Note that the matrix modification in the 

denominator requires an n L-dimension vectors Gram-

Schmidt orthogonalization, n backward convolutions, and 

translation of the correlation matrix by n rank 1 matrices 
i

ii R/zz . Since L = 64 is significantly larger than the multi-

tap filter order n (  3), we can neglect the complexity of 

Gram-Schmidt orthogonalization and other operations 

which are linear in L and limit our complexity calculations 

to operations which are quadratic in L. The backward 

filtering operation and matrix translations are both 

quadratic in L. The complexity of backward convolutions 

is nL(L+1)/2. Since the matrices are symmetric, 

complexity of matrix translation is also nL(L+1)/2. Thus 

the overall complexity increase is approximately nL(L+1). 

For a narrow band speech coder with 40L , n = 2 which 

means around 3280 extra operations per 5 ms subframe.  

This is around 14% of the typical FCB search complexity, 

which is presumed to be around 5M operations/sec.  For  

wideband coder with L = 64, n = 1, 4160 extra operations 

per 5 ms subframe are needed, which is around 10% of a 

typical wideband coder’s FCB search complexity 

(presuming 8M operations/sec).  Thus, the complexity is 

considerably less than the method proposed in [1].  

2.2. Discussion 

The optimizations process in Eq. 18 assumes that no 

constraints are placed on ACB gains (multi-tap filter 

weights). In practical speech coders, the ACB gains are 

constrained such as bounding the ACB gain between 0.0 

and 1.2 and limiting the multi-tap filter to have low pass 

filter characteristics [4,6]. The sequential search handles 

this by placing the constraints during the ACB search and 

decoupling the FCB search from the ACB parameters. We 

use an ad-hoc approach to handle these constraints. We 

define constraint handling parameters 10 i , and 

modify 
n

i
i

ii
i

R1

zz~
                          (19) 

When the ACB gains obtained during the ACB search 

were close to the constraints or outside the constraints, 

these parameters are made significantly less than unity.  
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4. RESULTS 

For comparisons, the proposed joint optimization was 

included in the FCB search algorithms of adaptive multi-

rate wideband (AMR-WB) coder [5]. Since the purpose of 

codebook search is to minimize the weighted synthesis 

error, weighted signal to noise ratio (WSNR) is used for 

comparisons. The WSNR is defined as the ratio of the 

energy of the weighted speech to the energy of weighted 

synthesis error.  We use a five minutes wideband speech 

having sentence pairs spoken alternatively by male and 

female talkers. 

        First we consider the case where n = 1. The ACB  is 

constrained to be between [0.0, 1.2].  To handle this, if the 

initial ACB gain is less than 0.0, then the constraint 

handling parameter  was chosen to be 0.16.  If the gain 

does not lie in the interval [0.1, 1.15] then  was chosen to 

be 0.302 for 12.65K mode and 0.25 for 8.85K mode. 

Otherwise  was set to unity. The results are shown in 

Table 1. Note that there is a gain of around 0.08 dB 

between sequential optimization and joint optimization. 

        Now we consider the case where n = 2. For this a 

multi-tap filter with a sub-sample resolution delay 

parameter [4] is integrated in the AMR-WB coder. A 

symmetric multi-tap filter of order 3 was used for 

simulation purposes, hence n = 2.  The taps of the multi-

tap filter are also constrained to have low pass 

characteristics.  

        If all i (Eq. 19) are one then the any set of 

orthogonal vectors will produce same result. Since the 

multi-tap filter is constrained and the overall ACB gain is 

also constrained, we restrict i to be less than one. We 

choose  y  (Eq. 2) as one of the vector and the other is the 

vector orthogonal to y  in the span of vectors [
1

y ,
2

y ].

We considered two scenarios   

J1. The parameter 2 is set to zero thus using a 

joint optimization equivalent to that of n = 1.

J2. The parameter 2 = 0.902 when all the 

constraint were inactive otherwise 2 = 0.36 for 

the 8.85K coder 0.205 for the 12.65 K coder.  

For both J1 and J2, the parameter 1 is chosen as in the 

case of n=1. The filter weights and FCB gain were not 

quantized. The results are shown in Table 2. The gain 

between sequential optimization and J2 is around 0.1 dB 

and the gain from J1 to J2 is only 0.03 dB.  

5. CONCLUSIONS 

A low complexity method for joint optimization of ACB 

multi-tap filter taps along with FCB excitation and FCB 

gain has been proposed.  This method has complexity 

advantages over prior methods, and incurs only a 10% to 

15% increase in complexity over similar sequential 

methods with a gain of around 0.1 dB which is equivalent 

to about 200 bits/s. Furthermore, this method can be easily 

incorporated into existing ACELP type speech coders 

through simple translations of the correlation matrix.  The 

search algorithm remains unchanged. This technique is 

part of the 3GPP2 VMR-WB Rate Set 1 Speech 

Codec Standard [6]. 

Table 1: Sequential vs. joint optimization in 8.85K and 12.65K 

mode of AMR-WB coder when the multi-tap filter order is one. 

Table 2: Sequential vs. joint optimization in 8.85K and 12.65K 

mode of AMR-WB coder when multi-tap filter order is two. 
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Mode Gain Bits 
WSNR(dB) 

Sequential 

WSNR(dB) 

Joint 

8.85 K 6 bits 9.04 9.11 

8.85 K Unquantized 9.13 9.21 

12.65 K 7bits 11.21 11.29 

12.65 K Unquantized 11.37 11.48 

Mode
WSNR(dB) 

Sequential  

WSNR(dB) 

J2

WSNR(dB) 

J2

8.85 K 9.59 9.66 9.69 

12.65 K 11.93 12.01 12.04 
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