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ABSTRACT

We propose a voice activity detection (VAD) algorithm based
on the generalized gamma distribution (GΓD). The distri-
butions of noise spectra and noisy speech spectra includ-
ing speech-inactive intervals are modeled by a set of GΓD’s
and applied to the likelihood ratio test (LRT) for VAD. The
parameters of GΓD are estimated through an on-line maxi-
mum likelihood (ML) estimation procedure where the global
speech absence probability (GSAP) is incorporated under a
forgetting scheme. Experimental results show that the pro-
posed VAD algorithm based on GΓD outperformed the al-
gorithms based on other statistical models.

1. INTRODUCTION

As the need of bandwidth efficiency in speech communica-
tion system increases, voice activity detection (VAD) has
become an indispensable part of the variable rate speech
coders. Recently, VAD algorithms based on likelihood ra-
tio test (LRT) employing statistical models have been pro-
posed and shown good performances [1], [2]. In most of
the conventional VAD algorithms adopting statistical mod-
els which operate in the discrete Fourier transform (DFT)
domain, the distributions of noisy speech spectra and noise
spectra are assumed to be complex Gaussians [1]. Chang
et. al. [2] utilized the Laplacian probability density func-
tion (pdf) to model the distributions of noisy speech spectra
and noise spectra, which was shown to be a better model for
the distribution of clean speech [3], [4], and showed that
VAD based on this complex Laplacian model was better
than that based on the complex Gaussian model. Recently,
it was also reported that the generalized gamma distribution
(GΓD) provides a better model of the distribution of clean
speech spectra than the Gaussian, Laplacian or Gamma pdf
[5].

In this paper, we propose a novel VAD algorithm in
which the generalized gamma distribution (GΓD) is em-
ployed for the LRT. The on-line maximum likelihood (ML)

parameter estimation algorithm proposed in [5] is modi-
fied such that it can be applied to VAD by incorporating
the global speech absence probability (GSAP). Experimen-
tal results show that VAD based on GΓD outperforms those
which employ other pdf’s and its performance is even better
than that of a number of standardized VAD algorithms in-
cluding ETSI AMR VAD option 2 and ITU-T G.729 annex
B VAD.

2. ON-LINE ML ESTIMATION OF THE
PARAMETERS OF GΓD

In this section, we briefly review the on-line ML procedure
for the estimation of the GΓD parameters [5]. GΓD is de-
fined by

fx(x) =
γβη

2Γ(η)
|x|ηγ−1 exp(−β|x|γ) (1)

where Γ(z) denotes the gamma function, and η, β and γ are
positive real valued parameters. This covers a fairly flexi-
ble family of distributions which includes most of the com-
monly used speech distributions. It is observed that if γ = 2
and η = 0.5, it becomes the Gaussian pdf, and if γ = 1 and
η = 1, it represents the Laplacian pdf. The pdf commonly
referred to as just the ‘Gamma pdf’ is a special case of the
gamma pdf with γ = 1 and η = 0.5.

The parameters η, β, and γ should be estimated to take
advantage of the assumed pdf for various applications. Here,
we apply the ML criterion to estimate the parameters of
GΓD. Given N data x = {x1, x2, · · · , xN}, with the as-
sumption that the data are mutually independent, the log-
likelihood function is given as follows:

log fx(x; η, β, γ) = N log γβη

2Γ(η)

+(ηγ − 1)
∑N

i=1 log |xi| −β
N∑

i=1

|xi|γ . (2)

By differentiating the log-likelihood function with respect
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to η, β and γ and setting them to zero, we obtain the follow-
ing three equations:

ψ0(η) = log β +
1
N

N∑
i=1

log |xi|γ (3)

β = η
1

1
N

∑N
i=1 |xi|γ

(4)

1
η

+ ψ0(η) − log β − β

η

1
N

N∑
i=1

|xi|γ log |xi|γ = 0 (5)

where ψ0(z) is the digamma function, which denotes the
first-order derivative of log Γ(z). After some mathematical
manipulation, the ML estimate of γ is obtained by the root
of the single nonlinear equation,

ψ0

( 1
N

∑N
i=1 |xi|γ

1
N2

∑N
i=1

∑N
j=1 |xi|γ log |xi|γ

|xj |γ

)
− 1

N

N∑
i=1

log |xi|γ

+ log
( 1

N2

N∑
i=1

N∑
j=1

|xi|γ log
|xi|γ
|xj |γ

)
= 0. (6)

Given an estimate of γ, it is straightforward to derive the
estimates for η and β.

Since, however, it is difficult to solve (6) analytically,
Shin et. al. [5] employ a gradient ascent algorithm to ob-
tain the estimate of γ, and determine the estimates of η
and β based on the obtained value of γ. From now on, let
us denote the estimates of γ, η and β by γ̂, η̂ and β̂, re-
spectively. The large sample size and the reasonable initial
estimates yield a satisfactory estimation of the parameters
via the gradient ascent algorithm despite the persistent di-
vergence of iterative numerical methods and the possibil-
ity of multiple solutions. Our previous work suggested an
on-line algorithm with a forgetting scheme which empha-
sizes the data incoming most recently. To estimate the rel-
evant parameters, only three statistics should be computed
over the given data, 1

N

∑N
i=1 |xi|γ̂ , 1

N

∑N
i=1 log |xi|γ̂ , and

1
N

∑N
i=1 |xi|γ̂ log |xi|γ̂ . For the implementation of an on-

line algorithm, these statistics are modified to incorporate a
forgetting factor λ, i.e.,

S1(n) = (1 − λ)S1(n − 1) + λ|xn|γ̂(n)

S2(n) = (1 − λ)S2(n − 1) + λ log |xn|γ̂(n)

S3(n) = (1 − λ)S3(n − 1) + λ|xn|γ̂(n) log |xn|γ̂(n).(7)

In our experiments, the initial value for γ̂ is set to 1,
which specifies the Laplacian or Gamma pdf, for both the
noisy speech and the noise. Once γ̂ is given, we can obtain
η̂ and β̂ from (3) and (4) such that

ψ0(η̂(n)) − log η̂(n) = S2(n) − log S1(n) (8)

β̂(n) =
η̂(n)
S1(n)

(9)

by taking the forgetting scheme into consideration. Since
ψ0(z) − log z is a monotonically increasing function of z,
the value of η̂ can be uniquely determined if the solution
exists. The value of γ̂ is updated at each time based on the
gradient ascent approach given as follows:

γ̂(n + 1) = γ̂(n) + µφ(γ̂(n), η̂(n),x) (10)

where µ is a learning rate and φ(γ̂(n), η̂(n),x) is an on-line
version of the gradient of the ‘average’ log-likelihood func-
tion with respect to γ. The ‘average’ log-likelihood function
is given as (2) divided by N , and its gradient with respect to
γ equals to the left-hand side of (5). Using (3), (4), (5) and
(7), the on-line version of the gradient is given by

φ(γ̂(n), η̂(n),x) =
1

η̂(n)
+ S2(n) − S3(n)

S1(n)
. (11)

As we can see, the estimation procedure is not computa-
tionally expensive if we store the values of the function
ψ0(z) − log z or the inverse of it on a table.

3. LIKELIHOOD RATIO TEST BASED ON GΓD

VAD can be considered as a hypothesis test where one hy-
pothesis (H0) states that the input signal consists of a pure
noise and the other (H1) indicates that the input is a mixture
of both the active speech and noise. The distributions for
the noise and noisy speech spectra are modeled by separate
GΓD’s, and LRT is performed for each frame of the input
signal.

In our approach, what is distinguished from the other
conventional VAD algorithms is that the noisy speech spec-
tra distribution represents not only the active speech regions
but also the inactive speech regions. Even though this ap-
proach may cause a biased estimate of the likelihood ratio
value, we have found that it enables a more robust param-
eter estimation in noisy environment. We assume that the
real and imaginary parts of the DFT coefficient are statisti-
cally independent [2] and distributed according to the same
GΓD, i.e.,

p(Xk) =
γ2β2η

4Γ(η)2
|Xk,RXk,I |ηγ−1

· exp(−β|Xk,R|γ − β|Xk,I |γ) (12)

for both the noise and noisy speech. This is equivalent to the
assumption that both the real part and the imaginary part are
the realization of the same random variable distributed ac-
cording to GΓD, i.e., the data set x = {x1, x2, · · · , xN} can
be substituted with {Xk,R(1), Xk,I(1), Xk,R(2), Xk,I(2),
· · · , Xk,R(N

2 ), Xk,I(N
2 )}.

First, the parameters of the specified GΓD’s should be
estimated. For the distribution of noisy speech spectra, the
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parameter estimation procedure is the same to the one de-
scribed in the previous section. On the other hand, for the
distribution of noise, we do not have a knowledge as to
which frame contains active speech and which does not, or
how large portion of the given input signal contributes to
noise estimation. Previous studies [1], [2] compute vari-
ously defined signal-to-noise ratio (SNR) and use it to es-
timate the noise power from the noisy speech spectra di-
rectly. The procedure is considered rather simple since only
the variances are required to be estimated. In contrast, we
need to estimate all three statistics, S1, S2, S3 in (7), and
we can not solely rely on SNR. Here, we take the global
speech absence probability (GSAP) as a measure of speech
inactivity, and incorporate it into a forgetting scheme. The
GSAP is given by [6]

P (H0|X) =
p(X|H0)P (H0)

p(X)

=
p(X|H0)P (H0)

p(X|H0)P (H0) + p(X|H1)P (H1)

=
1

1 + P (H1)
P (H0)

∏M
k=1 Λk

. (13)

where X = [X1, X2, · · ·XM ] when M indicates the total
number of spectral bins and P (H0)(= P (H1)) represents
the a priori probability of speech absence [6].

Given the GSAP, the statistics in (7) are modified to in-
corporate a measure of speech activity under the forgetting
scheme such that

S1(n) = (1 − λP )S1(n − 1) + λP |xn|γ̂(n)

S2(n) = (1 − λP )S2(n − 1) + λP log |xn|γ̂(n)

S3(n) = (1 − λP )S3(n − 1) + λP |xn|γ̂(n) log |xn|γ̂(n)

(14)

where P represents the computed GSAP when estimating
the noise spectra distribution and it is set to 1.0 to update
the estimates for the noisy speech spectra distribution and λ
is a forgetting factor. Once we obtain the estimated statistics
S1, S2, S3 through (14), we can estimate η, β, γ by means
of (8), (9), (10) and (11) for both the noisy speech and noise.
For active speech period where GSAP has a small value near
to zero, the statistics, S1, S2, S3 are updated very slowly
for the noise spectra distribution while the estimate for the
parameters of the noisy speech distribution evolves rather
fast.

Given the parameters of GΓD, the likelihood ratio for
the k-th DFT coefficient is given by

Λk =
p(Xk|H1)
p(Xk|H0)

=
γ̂2

S β̂2η̂S

S Γ(η̂N )2

γ̂2
N β̂2η̂N

N Γ(η̂S)2
|XRXI |η̂S γ̂S−η̂N γ̂N

· e(−β̂S(|XR|γ̂S +|XI |γ̂S )+β̂N (|XR|γ̂N +|XI |γ̂N ))

(15)

where the subscript N indicates parameters related to the
pdf of the noise spectra while the subscript S indicates those
corresponding to the pdf of the noisy speech spectra. The
final decision rule for VAD is given as follows:

log Λ =
M−1∑
k=0

log Λk

H1
>
<
H0

ξ. (16)

The decision threshold ξ as well as µ and λ which control
the rate of parameter update are determined according to
a SNR-based rule which will be described in the next sec-
tion. To further enhance the performance of VAD, log Λ is
modified using hangover scheme proposed in [1], and then
smoothed using a forgetting scheme similar to that in [7]:

Ψ(n) = (1 − λΛ)Ψ(n − 1) + λΛ log Λ (17)

where λΛ is a smoothing factor.

4. EXPERIMENTAL RESULTS

To compare the performance of the proposed algorithm with
that of the conventional algorithms, we evaluated speech de-
tection error probability (Pe), where both false alarms and
missing errors are considered. In our experiments, speech
data spoken by 4 male and 4 female speakers were sam-
pled at 8000 Hz. The total length of the speech material
was 456 s. To obtain Pe, we made reference decisions on a
clean speech material by labeling manually at every 10 ms
frame. The percentage of the hand-marked speech frames
was 58.2% which consisted of 44.8% voiced sounds and
13.4% unvoiced sounds frames. In order to make noisy en-
vironments, we added the vehicular and office noises to the
clean speech data by varying SNR.

The threshold, ξ as well as the smoothing parameter of
test statistic, λΛ, the forgetting factor of statistics in (14)
for noisy speech, λ, the learning rate of γ for noisy speech,
µ, the ratio of λ for noisy speech to that for noise, Rλ,
and the ratio of µ for noisy speech to that for noise, Rµ

were determined to minimize Pe. The forgetting factor λ
used to update the noise spectra distribution was set to be
higher than that for the noisy speech distribution to make
the effective averaging interval lengths equal since for noise,
λP (H0|X) played a role of a forgetting factor. The learn-
ing rate µ for the noise spectra was chosen smaller than that
of the noisy speech spectra based on the assumption that the
background noise characteristic evolves more slowly. These
factors are adaptively determined based on SNR. λΛ should
be increased as SNR increases, since for low SNR, more
smoothing is needed. On the other hand, λ and µ should be
set higher when the SNR is low to enable a fast update of
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noise vehicle office

SNR(dB) 5 10 15 5 10 15
G.729B 27.49% 23.45% 19.76% 26.43% 22.72% 19.26%
AMR 2 8.09% 6.91% 6.29% 16.24% 14.77% 15.43%

Laplacian 11.48% 8.60% 6.91% 18.43% 16.45% 17.25%
Gamma 11.84% 9.24% 7.49% 23.54% 21.01% 18.96%
GΓD 6.41% 5.85% 5.38% 13.47% 14.60% 18.34%

Table 1. Pe of the proposed GΓD, Laplacian, Gamma-based, AMR VAD option 2 and G.729 Annex B VAD’s for the various
environmental conditions

the statistics. Rλ should be decreased as SNR goes lower
because adaptability becomes more important not only for
noise but also for noisy speech in a low SNR environment.
In contrast, ξ should be larger in higher SNR conditions
since the estimates for the noise spectra distribution are un-
reliable. Factor values used in the experiment were λΛ ∈
[0.04, 0.2], λ ∈ [0.022, 0.028], µ ∈ [0.006, 0.0085], Rλ ∈
[1.05, 1.45] and Rµ = 0.7.

The detection results are summarized in Table 1. From
the experimental results, it is evident that not only the pro-
posed VAD algorithm based on GΓD outperforms algorithms
utilizing other commonly used pdf’s, but also it shows bet-
ter performance than the standard VAD algorithms such as
ITU-T G.729 Annex B VAD [8] and ETSI AMR VAD op-
tion 2 [9] in most of the environmental conditions.

5. CONCLUSION

We have proposed an approach to apply the complex GΓD
to VAD based on LRT. The distribution of noisy speech
including inactive speech periods and that of noise spec-
tra are modeled by GΓD’s where the parameters are esti-
mated through the on-line parameter estimation algorithm
incorporating GSAP as a measure of speech inactivity. It
has been found that the VAD algorithm based on GΓD out-
performed those based on other widely used pdf’s and the
standard VAD algorithms including G.729 Annex B VAD
and AMR VAD option 2 in a number of experiments. Fur-
ther improvement is expected if we incorporate some fea-
ture used in standard VAD’s, such as channel energy, chan-
nel SNR, and pitch lag.
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