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ABSTRACT

In order to capture sequential information and to take advantage
of extended training data conditions, we developed an algorithm
for speaker detection that scores a test segment by comparing it di-
rectly to similar instances of that speech in the training data. This
non-parametric technique, though at an early stage in its develop-
ment, achieves error rates close to 1% on the NIST 2001 Extended
Data task and performs extremely well in combination with a stan-
dard Gaussian Mixture Model system. We also present a new scor-
ing method that significantly improves performance by capturing
only positive evidence.

1. INTRODUCTION

Traditionally, speaker detection tasks have involved at most a few
minutes of training speech and a minute of test speech. Under
these circumstances, the Gaussian Mixture Model (GMM), which
lumps all speech frames together to create a generic frame model,
is a reasonable approach. It succeeds by virtue of its simplicity.
More recent techniques, however, attempt to capitalize on greater
amounts of data available through NIST’s Extended Data task to
capture speaker information that exists in longer speech patterns.
Language modeling, duration modeling, and modeling of various
prosodic cues have all proven useful [1, 2, 3]. The motivation for
our research is that given enough training examples, we can avoid
such explicit parameterized modeling altogether, and score test to-
kens by comparing them directly to similar instances in the training
data.

A speaker detection system based on such direct comparison is
not unprecedented. Higgins et al. developed a frame-level nearest-
neighbor approach that was competitive with a GMM system in the
early ’90s [4]. Dragon Systems extended this idea to sequences of
frames a few years later with encouraging results (see description
of the Sequential Non-Parametric system (SNP) in [5]). More re-
cently, the speech recognition community has begun to look into
example-based techniques to enhance long-standing HMM stan-
dards (e.g. [6, 7]), and in the last few months, it has come to
our attention that [8] used a dynamic time warping word-spotting
technique to find and compare similar test and training frame se-
quences.

Our motivating intuition is that if we want to know whether a
test speaker is the same as the target speaker, we ought to look for
very good acoustic matches that are as long as possible. While we
are not convinced of anything by long poor matches (as people say
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things differently on different occasions), and only somewhat en-
couraged by short good matches (it is conceiveable that two people
could produce very similar frames or even short frame sequences),
it is precisely the long good matches that ought to be most useful
for speaker detection. With this in mind, we have begun to build a
framework for example-based speaker detection.

This research, which represents an expansion of Dragon’s SNP
system, is still exploratory. Compared with GMM or Hidden
Markov Model (HMM) approaches, little is known about the be-
havior of these example-based systems. In the sections that follow,
we describe the design and implementation of our system and then
discuss some preliminary but promising results on the NIST 2001
Extended Data task.

2. THE ALGORITHM

We use output from an automatic speech recognizer (ASR) to par-
tition the test and target training speech streams into “tokens”.
Test-target pairs are then scored, using nearest-neighbor tech-
niques, by measuring the frame-level distances between test to-
kens and instances of matching target tokens. The following sub-
sections provide greater detail.

2.1. Feature extraction

As a front-end, we create feature vectors with 20 mel-frequency
cepstral coefficients (MFCCs), C� - C��, and their first derivatives
for a total of 40 features per 10-ms frame. Cepstral Mean Subtrac-
tion (CMS) is used at the utterance level to correct for some simple
channel differences.

2.2. Token labels for data

Using transcriptions and time-alignments from the SRI recognizer
[9], we divide the data into tokens. These could be phones or words
or word bigrams or anything else. While we know from Dragon’s
work on the SNP system that short tokens like phones are effective,
we hope to show that even more speaker-discriminating power is
contained in longer tokens. Note that because we are using ASR
output, both the word identity and the alignment information are
highly errorful. To get a sense for the costs of these errors, we
will contrast systems that use ASR output and force-aligned truth
transcripts, below.

2.3. Comparing test and target speakers

Comparing test and target utterances involves pairwise compar-
isons between each test token and every instance of that token in
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the target training data. When we compare two tokens, we use the
Euclidian metric to calculate the distance between aligned frames.
In keeping with the nearest-neighbor strategy, we retain only the
best test-target pairing for each test token.

Before we can take such measurements, though, we need to
decide how to line up the frames. The simplest method is to align
the first frames of the test and target tokens and the second frames
and so on, and stop when we reach the end of the shorter token.
We might instead choose to slide the shorter token through the
longer token, looking for the best place to start matching one-to-
one. A third possibility is to use some sort of dynamic time warp-
ing (DTW). DTW is the standard solution to the problem of com-
paring speech tokens of different lengths since it is assumed that
certain sounds (vowels, for example) might be more prone to dura-
tion variation than others. Recall, however, that for the purpose of
speaker detection, we are really interested in long good matches.
Ideally, we would like to find cases where the test token matches
the target token exactly, without any stretching or shrinking, as it
is reasonable to assume that there is speaker information in the du-
ration of those sounds. We compare these alignment strategies in
the next section.

Once we have a score for each test token, we need to decide
how to produce an overall score. One method is simply to take
an average of the token scores. We will call this the basic-score.
Specifically, we sum the unnormalized test-token scores and divide
by the total number of frames. A second method involves keeping
only positive evidence. Since we are intuitively more convinced by
really good scores, we use a hit-score (HS) to weight good scores
more heavily than bad ones. The hit-score for an entire test-target
comparison is computed as follows:

HS �
X

i�test tokens

number of matched frames in i

kscore�i�
(1)

This formulation lets bad (larger) scores drop out as effective
zeros and gives exponentially heavier weight to good (smaller)
scores. The value of the constant k is estimated empirically to
be 2. We compare results obtained from these different scoring
methods in the next section.

2.4. Normalizing the scores

It is well known that raw scores need to be normalized so that the
scores assigned to various test-target pairs are comparable. Nor-
malization is especially important in our case since we are not
adapting from any background model (as is customary with GMM
or HMM systems) which naturally tends to center the scores.

We apply two standard normalizations, one to correct for the
variability of the test data, and one to correct for the variability of
the training data. For the former, a GMM system would subtract
from the score of each test-target pair the score that the test seg-
ment receives against a background model to create the usual log-
likelihood ratio score. Since we have no such background model,
we create a “pseudo-speaker” whose speech consists of conversa-
tions from a number of different held-out speakers. We subtract the
test-pseudo-speaker score from each test-target score. To address
target variability, we use ZNORM. Specifically, a set of held-out
impostor samples are each scored against the target training data in
question. We subtract the mean impostor score from the test-target
score and divide by the standard deviation.

3. EXPERIMENTS

Our experiments are based on the Extended Data Task from
the NIST 2001 Speaker Recognition Evaluation [10], a text-
independent single-speaker detection task using data obtained
from the Switchboard-I corpus. This data set consists of about
2400 telephone conversations among 543 speakers (302 male, 241
female) collected in the early 1990s by Texas Instruments. The
speakers are divided into 6 independent “splits” so that when test-
ing on one split, the others can be used for normalization.

In the evaluation, 1, 2, 4, 8, and 16 conversation-side train-
ing conditions are specified (the average conversation side con-
tains 2 - 3 minutes of speech). We focus our attention on the 8-
conversation-side training, which has become a standard for data-
intensive algorithms.

3.1. General results

Table 1 shows results for various choices of tokens. DTW is used
to determine frame alignments; the final scores are linear combi-
nations of the basic-score and the hit-score. Performance of a typ-
ical GMM system (provided by SRI) on this data is included for
reference. The Equal Error Rate (EER) and the minimum of the
Decision Cost Function (DCF) represent two points on the now
standard Detection Error Tradeoff (DET) curve [11]. The EER is
the point where the two error types, false alarms and misses, occur
with equal relative frequency, while the DCF, as specified by NIST,
weights false alarms and misses in accordance with the demands
of many real-world applications.

Token EER(%) DCF
phones 1.85 0.0937
phone bigrams 1.25 0.0685
phone trigrams 1.14 0.0604
words 1.44 0.0736
word bigrams 2.09 0.1130

GMM 0.90 0.0509

Table 1. System performance for various tokens in terms of EER
and min. DCF on NIST’s 2001 Extended Data Task. Typical GMM
performance is provided for comparison.

The best performance is obtained using phone trigrams, an en-
couraging result given our hypothesis that longer tokens ought to
be more useful for speaker detection. Word bigrams, however, give
poorer performance than single words. To understand these scores,
we need to consider the tradeoff between the increased power of
longer tokens and data sparsity. For example, there are only 47
different phone tokens, but around 8600 different phone-trigrams,
so that a test phone might have a few thousand choices for a target
match while a test phone-trigram might have fewer than ten. The
chances of finding a good match for a phone-trigram are increased
by the additional context information inherent in the longer utter-
ance, but often this advantage is outweighed by overwhelmingly
more abundant data for single phone matches. Note that while
finding a good match is useful evidence, not finding a good match
could mean that the test and target are in fact different speakers
or that we simply have not seen enough target instances to make
any claims, one way or the other. Thus, using shorter tokens limits
the sort of uncertainty that arises from data sparsity but sacrifices
the greater confidence gained from matching longer tokens. In the
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case of word bigrams, even the most common tokens (“you know”,
“I think”, etc.) only appear a few times in each conversation, even
further exacerbating the data-sparsity issue.

3.2. ASR vs. truth

As mentioned earlier, the token labels and time-alignments are
obtained from an ASR system which makes mistakes. Specifi-
cally, the ASR output, provided by SRI, is the product of a sim-
plified 1-pass recognition system using only a bigram language
model to compensate for the fact that the recognizer was trained
on Switchboard-I data (our test data). This system achieved an av-
erage word error rate (WER) of about 30% on this material. As
it turns out, current state-of-the-art recognizers now obtain WERs
in the teens on Switchboard-I, so are now closing the gap between
the “truth transcripts” and “ASR output” reported here.

Token ASR Truth
word bigrams 2.09 1.17
phone trigrams 1.14 1.03

Table 2. System performance (EER) using ASR and truth tran-
scripts.

The truth transcripts significantly improve our results, espe-
cially when we use word-level tokens. This might be because the
alignments are based on human transcriptions of the words rather
than the phones. While more accurate word identities would pro-
vide more viable token matches, the phone identities given by the
ASR might be close enough to the truth to allow for good match-
ing. Nonetheless, this experiment demonstrates that we could sig-
nificantly improve our results given better ASR, but more impor-
tantly, it might be to our benefit to find a way to exclude ASR
from our system entirely, perhaps by using some more data-driven
clustering algorithm to group similar frame sequences.

3.3. Scoring methods

All of the scores reported thus far are simple linear combina-
tions of the basic-score and the hit-score methods discussed ear-
lier. In addition to these, we also experimented with a third scoring
method which focuses on negative evidence which the hit-score ig-
nores. Intuitively, we might be persuaded that a speaker does not
match a target if there is a case where even in the presence of many
potential token matches, there is not a single good score. The for-
mula for this negative-score (NS) closely resembles the hit-score
but lets positive evidence drop out, emphasizing bad scores:

NS �
X

i�test tokens

(matched frames in i)(target instances)
kM�score�i�

(2)

Again, k is set at 2, while M represents a best guess at the
maximum score. We compare these scoring methods in table 3.

Token Basic HS NS
phones 2.25 1.98 38.9
phone trigrams 2.01 1.30 37.0

Table 3. Performance (EER) of basic-score, hit-score, and
negative-score for phones and phone trigrams.

As it turns out, negative evidence, at least as we have formu-
lated it here, is almost meaningless. This may be one reason why
the hit-score outperforms the basic-score, which factors in all ev-
idence, positive and negative. More specifically, we can assume
that not all tokens have the same speaker-discriminating power, so
that the hit-score benefits from extracting only crucial matches that
are compromised in the basic-score’s across-the-board averaging
approach. Perhaps this is why the disparity between the hit-score
and the basic-score is greater for phone trigrams than for phones –
the phones are all fairly useful tokens but the phone trigrams tend
to vary in their speaker-discriminating power, whether because of
their intrinsic value or because of sparsity constraints, and the hit-
score is better at picking out the useful information.

3.4. Frame alignment methods

All the results reported so far have used DTW to align the frames
for token comparisons. How do the other alignment strategies dis-
cussed earlier perform? What if we allow unconstrained matching
– i.e. within the bounds specified by the token start and end times,
we let each test frame match any target frame?

Token DTW SW FF UNC
phones 1.85 2.60 2.56 2.49
phone trigrams 1.14 1.14 1.17 1.44

Table 4. Performance (EER) with various frame alignment meth-
ods (SW = sliding window, FF = first frames aligned, UNC = un-
constrained frame matching)

When we use individual phones as tokens, DTW is clearly pre-
ferred, giving significantly better performance than the other frame
alignment methods. However, we see a surprising result when we
use phone trigrams. We expected that DTW would be more im-
portant for longer tokens than for shorter ones, in effect correcting
for the scarcity of long well-matched test-target tokens. And yet,
our DTW algorithm shows no clear advantage over the non-time-
warping methods in this case. At the moment, we are not sure
why this is the case, but we suspect that the problem might lie in
our implementation of DTW, which currently limits the options for
doubling and skipping frames. It is also possible that given such
low error rates, we have hit a performance barrier which can only
be broken once we have dealt with other issues such as channel
mismatches. On the positive side, we are encouraged by the re-
markable performance of the non-time-warping methods, as well
as by the fact that the sequential methods provide a significant ad-
vantage over the unconstrained approach for the longer tokens.

3.5. System combinations

Another important test of a new speaker detection system is how
well it combines with a standard GMM baseline. We designed
our system to capitalize on sequence information that the GMM
neglects with the expectation that the two methods would perform
well together. While our phone-trigram system is slightly behind
the GMM, a simple 50-50 linear combination of the two systems
yields a huge improvement. Most notably, the DCF drops by more
than a factor of 3, from 0.0509 (GMM) to 0.0157 (combined).
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Fig. 1. DET plots for the phone-trigram system, the GMM system,
and a linear combination of the two.

4. FUTURE WORK

This system is still at an early stage of development and much work
remains to be done to realize its full potential. Our future work can
be split into short-term experiments and long-term projects. Short-
term efforts include:

� Expanding the background and ZNORM sets. Both nor-
malizations have proven extremely helpful (phone trigram
raw score = 9.5% EER; after background normalization =
2.8% EER; after ZNORM = 1.1% EER) but the sets were
kept small to minimize computation.

� Trying other distance metrics. We ought to try performing
Linear Discriminant Analysis (LDA) on the features before
using the Euclidian metric or choosing a different distance
measurement.

� Improving the DTW algorithm. Our DTW algorithm sup-
ports variable penalties for skipping and doubling frames,
but currently, we simply assign a constant penalty for all
frame skips. Since we know that the errorful ASR align-
ments reduce performance considerably, we ought to con-
sider reducing or eliminating the cost of frame skipping at
the edges of tokens, for example.

� Changing the front-end. Given that our scores are closely
tied to the raw features, we stand to benefit from a fea-
ture mapping algorithm [12]. While CMS roughly corrects
for some channel variation, feature mapping more carefully
places utterances into a “handset-independent” space.

The long-term goals for this project are more exploratory. Though
at present we simply compare a fixed set of test and target tokens
using DTW instead of a more standard GMM or HMM approach,
we should exploit the freedom of our example-based method to do
dynamic token selection, perhaps in a style comparable to variable-
length unit selection employed by some Text-To-Speech systems.
We could use the longest test strings for which there exist suffi-
cient target instances, and back off to shorter test-target matching

if necessary. We could also imagine an even more general, more
data-driven approach. If we search dynamically for long good test-
target matches at the frame level rather than at the token level, we
can avoid using ASR entirely, which has the potential to be both
faster and more accurate.

5. CONCLUSIONS

As more and more data becomes available for extended data tasks,
we would like to test our intuition that finding long good acoustic
matches between test and training data is the key to speaker detec-
tion. Our initial experiments have yielded promising results and
we look forward to expanding and improving our system.

6. ACKNOWLEDGEMENTS

The authors would like to thank everyone in the speaker-id group
at ICSI and at SRI for providing technical assistance and stimulat-
ing conversation. In particular, George Doddington championed
the hit-scoring idea, Kofi Boakye generated front-end features, and
SRI provided their GMM system scores and ASR output.

7. REFERENCES

[1] G. Doddington, “Speaker Recognition Based on Idiolectal
Difference between Speakers,” in Proc. Eurospeech-2001,
pp. 2521–2524.

[2] L. Ferrer et al., “Modeling Duration Patterns for Speaker
Recognition,” in Proc. Eurospeech-2003, pp. 2017–2020.

[3] D. Reynolds et al., “The SuperSID Project: Exploiting High-
Level Information for High-Accuracy Speaker Recognition,”
in Proc. ICASSP-2003, pp. 784–787.

[4] A.L. Higgins, L.G. Bahler, and J.E. Porter, “Voice Identifi-
cation Using Nearest-Neighbor Distance Measure,” in Proc.
ICASSP-1993, vol. II, pp. 375–378.

[5] A. Corrada-Emmanuel, M. Newman, B. Peskin, L. Gillick,
and R. Roth, “Progress in Speaker Recognition at Dragon
Systems,” in Proc. ICSLP-1998, vol. 4, pp. 1355–1358.

[6] M. De Wachter, K. Demuynck, D. Van Compernolle, and
P. Wambacq, “Data Driven Example Based Continuous
Speech Recognition,” in Proc. Eurospeech-2003.

[7] S. Axelrod and B. Maison, “Combination of Hidden Markov
Models with Dynamic Time Warping for Speech Recogni-
tion,” in Proc. ICASSP-2004, pp. 173–176.

[8] H. Aronowitz et al., “Text Independent Speaker Recognition
Using Speaker Dependent Word Spotting,” in Proc. ICSLP-
2004.

[9] A. Stolcke et al., “The SRI March 2000 Hub-5 conversa-
tional speech transcription system,” in Proc. NIST Speech
Transcription Workshop, College Park, MD, 2000.

[10] “NIST 2001 Speaker Recognition website,”
http://nist.gov/speech/tests/spk/2001.

[11] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and
M. Przybocki, “The DET Curve in Assessment of Detec-
tion Task Performance,” in Proc. Eurospeech-1997, vol. 4,
pp. 1895–1898.

[12] D. Reynolds, “Channel Robust Speaker Verification via Fea-
ture Mapping,” in Proc. ICASSP-2003, vol. II, pp. 53–56.

I - 760

➡ ➠


