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ABSTRACT

This contribution presents a Speaker Verification system that uses
YOHO database which has been coded with ITU-T G.729 stan-

dard. A set of bitstream based features consisting of 16 LPC Cep-

stral coefficients and MFCC derived from the quantized line spec-

tral pairs as well as residual information in the form of pitch was
utilized to construct the speaker’s models, and their robustness was

studied under white noise conditions.

Results suggest that using a cohort model, MFCC are more

robust under noise conditions than LPC Cepstral coefficients; the
addition of pitch to the feature vector contributes from a 16% to

a 29% of improvement in verification performance under different

noise conditions.

1. INTRODUCTION

In the last few years, the demand of an extra security layer joint

with the availability of communication tools have made biomet-

rics an increasing important area of research to deal with many
emerging scenarios. Among these demanding needs we can men-

tion the ability to perform critical operations or retrieve confi-

dential information remotely in a secure way, identity verifica-

tion for immigration purposes, or for voting in an election process;
also, several tools now allow ubiquitous access to information such

as wired/wireless Internet connection, cellular phone and satellite

networks, etc. Voice as a biometric measure is a non-intrusive way

to validate a person’s identity given that it is the main commu-
nication channel for humans. Furthermore, speech acquisition is

simple and inexpensive because it doesn’t require any special ap-

paratus; additionally, the infrastructure to convey speech from one

place to another has grown exponentially.

The ultimate goal of a Speaker Verification (SV) system is
to correctly accept a legitimate registered user and reject impos-

tors, who falsely claim to be a legitimate user, therefore protect-

ing restricted information or privileges by means of estimating and

verifying a set of physiological characteristics extracted from the
speech waveform.

Although the task of SV has been rather well studied for over

forty years [1], there has been a number of recent advances such

as the use of Gaussian mixtures to model the individual’s different

configurations of the vocal tract [2], different score normalization

∗Partial work was done while the author visited ITESM
†This work was supported by the ITESM Information Security Chair

and CONACyT 2002-C01-41372

schemes as presented in [3, 4], or techniques for the selection of
the threshold value as studied in [5].

More recently, as a result of the growing utilization of Voice

over IP (VoIP) and cellular telephony for remote operations, bit-
stream based features have been studied in [6] for automatic speech

recognition (ASR) and in [7, 8] for SV.

Our work focuses on SV where speech waveforms have suf-
fered a lossy compression by the ITU-T G.729 codec which is a

prevalent coding standard in wireless and voice over IP applica-

tions. A set of features derived from the encoder’s bit-stream is

proposed, including residual information in the form of pitch, and
used in an experimental system that demonstrates their effective-

ness. Section 2 presents an overview of the SV system, including

background information for completeness; section 3 describes the

experimental setups and the studied techniques. Finally, section 4
discusses the results.

2. SPEAKER VERIFICATION SYSTEM

2.1. Background

The task of SV can be classified as text dependent or text inde-
pendent, in the case when the SV system knows the transcription

of the verification utterance or not, respectively. In a pseudo text
independent SV system, like the one presented in our work, the ex-

act transcription of the verification utterance is unknown, however
it is known to belong to a closed set with fixed characteristics as

described in section 2.2.

In general each registered individual ’k’ has a correspond-
ing statistical model λk, a Gaussian mixture in our case, which is

trained with a sequence of feature vectors O = [o1,o2, . . . ,oT ]
extracted from speech with 25-30 ms overlapping windows, every

10 ms. The labels of these features indicate the speaker’s identity.

Given sequence of observed independent and identically dis-

tributed (iid) features O, the likelihood of being generated by the

k-th speaker is:

L(λk|O) = p(O|λk) =
TY

t=1

p(ot|λk), (1)

p(ot|λk) =
MX

m=1

ωm,k N (ot; µm,k,Σm,k), (2)

MX
m=1

ωm,k = 1; ∀k, (3)
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where N (ot; µm,k,Σm,k) is a multivariate Gaussian probabil-

ity distribution function (pdf) with mean vector µm,k and covari-

ance matrix Σm,k; therefore the models, characterized as λk ≡
(ωm,k, µm,k,Σm,k; m = 1, . . . , M), are estimated using the train-

ing data (properly labeled) and the maximum likelihood criterion,

via the EM algorithm.

After the speaker’s models have been trained, the decision of

whether to accept or reject is based on the two hypotheses H0: true
speaker; H1: impostor. The likelihood ratio test (LRT) evaluates

to a score value that suggests to accept H0 over H1.

Θ̂(O) =
P (H0)

P (H1)
=

p(O|λk)

p(O|λk̄)
(4)

Θ(O) = log Θ̂(O) = log p(O|λk) − log p(O|λk̄). (5)

Notice that while λk represents the model for the k-th speaker,
λk̄ represents the model of an impostor that provides a contrast.

Depending on the chosen scope of contrast, this last model can

be defined under three schemes: as a universal background model
(UBM), as a cohort or as a background model. The UBM is a single
speaker independent (SI) model which is trained with utterances

from a large group of impostors; on the other hand, the cohort
score is obtained from multiple speaker models by averaging the

likelihood of the observation with a speaker dependent (SD) group
of impostors Jk as stated in Eq. 6; finally the background model is

a single SD model trained with data from a limited selected group

of impostors.

P (O|λk̄) =
1

N

X
j∈Jk

P (O|λj). (6)

Once a verification score has been obtained, a threshold value is

needed to decide if the observation was produced by an impostor

or by a registered speaker. This value is selected by minimizing
the cost function:

C = P (I)P (T̂ |I)CF A + P (T )P (Î|T )CF R, (7)

where T and I refer to a true claimant and an impostor respec-

tively; and T̂ and Î refer to deciding the speaker was a true claimant
or impostor respectively. CF A and CF R are the cost weights for

false acceptance (FA) and false rejection (FR) that suit the appli-

cation. FA and FR correspond to type I and type II errors in our

hypothesis testing formulation.

2.2. The database

YOHO [9] is a database with 138 speakers (32 female and 106

male), including at least four speakers with mother tongue other

than American English. It has two main sections: ENRollment and
VERification; furthermore ENR has 4 sessions with 24 utterances

each, and VER has 10 sessions with 4 utterances each; resulting

in a total of 13248 and 5520 enrollment and verification utterances

respectively. The transcription of utterances consists of a ’lock-
combination’ phrase (three two-digit numbers). The speech wave-

forms have been quantized with 12-bits and sampled at 8 KHz.

Although the length of each waveform is around 3-5 s, only

about 2.5 s is active speech, yielding to roughly 240 s of active

speech for ENR per speaker.

2.3. ITU-T G.729 codec

ITU-T G.729 [10] is a set of speech coding standards recommended

for digital cellular phones, operating at the rate of 8 kb/s. This rec-

ommendation describes a “toll quality” Conjugate Structure Alge-
braic Code Excited Linear Prediction encoder (CS-ACELP), with

a frame rate of 10 ms at 80 bits/frame. The input speech must be

sampled at 8 kHz represented in 16-bit linear PCM (Pulse Code

Modulation) format. A 10th order linear prediction analysis is per-

formed on every frame of windowed speech generating parameters
that characterize the signal production system. These parameters,

sometimes referred to as short-term prediction or spectral enve-

lope information, are transformed into Line Spectral Pairs (LSP)

[10] parameters for quantization. The residual or excitation infor-
mation consists of two components: periodic and random.

Every frame, 18 bits are allocated for the short-term predic-

tor in the form of LSP parameters, while 62 bits are used for the

residual (20 and 42 bits for the periodic and random components
respectively). The average spectral distortion due to quantization

is approximately 1.5-2dB [11].

The periodic part of the residual consists of pitch estimates

Ps, which provides an index pointer for a position in the adaptive
codebook (CB) to facilitate “long term” prediction spanning over

a pitch period; and pitch gains Gp’s, which is the corresponding

scaling factor to produce the best match between the input speech

and its delayed version as encapsulated in the adaptive CB. Notice
that the gain is also a measure of correlation between the input and

its delayed version; the magnitude of such a long span correlation

is nearly one for a periodic signal and nearly zero if the signal

lacks of periodicity. It can thus be considered a crude measure of
vocality.

The random part consists of the algebraic CB indices and signs

(Ic’s and S’s) and the fixed (algebraic) CB gains Ga’s. This com-

ponent is related to the excitation function that cannot be properly
represented with both the long and short term predictors.

3. EXPERIMENTAL SETUP

Two sets (A and B) of experiments are presented in this section.

Set A obtains a sequence of feature vectors from the speech wave-
form, as it is conventionally done, by means of a mel-scaled fil-

ter bank, transforming to cepstral domain and obtaining 13 MFCC

(mel-frequency cepstral coefficients). Input speech waveforms con-

sist of clean and noisy speech, where the noise can be either Gaus-

sian white noise (for SNR= 20dB, 15dB, 10dB), coding distortion,
or both.

Set of experiments B computes a sequence of bit-stream based

feature vectors (without waveform synthesis). We study two types

of LSP-derived features in the form of LPC-Cepstra and MFCC
(from the LPC estimated spectrum). Additionally, we attempt to

incorporate residual information to the feature vectors by using the

pitch estimate as explained in 3.2.

In both sets, Gaussian mixture models were used with M =
64 mixtures. 138 speaker’s models were trained. Previous work

[7] has studied SV from bit-stream using a UBM for H1; in our

work we use cohort to calculated the verification score using Eq.

5 and 6; where Jk is the set of all speakers excluding k.

3.1. Set A (waveform)

This experiment set is our baseline. A total of 12 MFCCs plus

energy is extracted every 10 ms; then ∆ and ∆2 are appended to
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the vector, forming a 39 dimension feature vector.

Training and testing data for experiment A.1 was extracted

from clean and noisy waveforms (white noise) for SNR values of

20dB, 15dB and 10dB. Both matched and mismatched conditions

are studied, as it is in the rest of the experiments. In experiment
A.2, we trans-coded the waveforms used in A.1 with G729 codec

(coding followed by decoding). Notice that white noise was added

to the clean input before trans-coding.

3.2. Set B (bit-stream)

Three types of features were extracted from G.729 bit-stream. The

first one considers the quantized LSP parameters, which have a one

to one correspondence to linear prediction coefficients (LPC), and
further transforms them to cepstral domain using the recursion:

c[n] = an +

n−1X
k=1

„
k

n

«
c[k]an−k, (8)

where the convention of 1 − A(z) was used for the inverse filter,

a0 = 1 and an = 0 for n > p. Although knowing c[1], . . . , c[p]
is sufficient to recover back the LPC coefficients [8]; the effect of
truncating a LPC-Cepstral sequence (also referred as rec-cepstrum)

or multiplying the sequence by a rectangular window, is the con-

volution of the log power spectrum with the Fourier transform of a

rectangular window (i.e., a sinc function), causing the smooth of
the power spectrum estimate from the LPC coefficients, and reduc-

ing therefore the sharpness of the formant peaks. This effect is not

necessarily bad, since formant sharpness are artifacts themselves.

In our experiments 16 LPC-Cepstral coefficients were considered.

The second type of feature we study is MFCC based on the

LPC spectrum estimate, which is obtained by sampling around the

unit circle as in [7]; then a mel-scaled triangular shaped filter bank
is used and finally the output is converted to cepstral domain.

The third type of features consists of a pitch estimate: log f0

derived from the long term predictor. A moving median filter was

applied to remove any glitches.

Experiment B.1 trains Gaussian mixture models as in experi-
ments A, using 16 LPC-Cepstral coefficients plus ∆ and ∆2, form-

ing a 48 dimensional feature vector. Training and testing condi-

tions are consistent with those for experiment A.2.

Experiment B.2 is similar to experiment B.1, except that MFCC

(from LPC spectrum) were used. The feature vector is 39 dimen-

sional as in experiments A.

Experiment B.3 consists on appending the residual feature:

log f0 to experiment B.2.

The objective of experiment B.3 is to observe the impact of

the residual features on the final SV performance.

4. RESULTS

As described in section 3, we used the conventional feature vectors

based on MFCC obtained from speech waveforms in experiment

set A, while in experiment set B we used features based on the
bit-stream. A cohort approach was used for H1.

Results are presented in the form of equal error rate (EER) as

in table 1 or in the form of detection error trade-off (DET) plots.
The EER operation point of a SV system occurs when the thresh-

old is adjusted so that FR and FA have the same value. A DET plot

computes the two types of erros while sweeping the threshold, us-

ing normal deviate scale in both axis.

Exp /dB Cln 20 15 10 (20) (15) (10)

A.1 0.18 1.0 1.4 2.4 3.8 12.0 22.0

A.2 0.41 1.5 2.2 3.1 3.1 11.0 21.0

B.1 0.34 - 1.6 2.8 15.0 28.0 -

B.2 0.45 1.2 1.9 3.3 3.8 10.0 21.0

B.3 0.34 1.0 1.5 2.5 2.7 7.2 17.0

Table 1. EER in % for experiment sets A and B. Column header

indicates SNR in dB, the lack and presence of parenthesis denote

matched and mismatched conditions respectively.

Figure 1 shows that although coding noise deteriorates the

SV performance under clean conditions by 0.23%, the effect of
noise presence masks the effect of coding distortion, causing both

performances to be comparable under noisy matched conditions.

On the other hand, speaker models trained with clean trans-coded

speech showed more robustness under mismatched noisy condi-
tions.
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Fig. 1. DET plots from experiment set A. Labels {a, b, c, d} de-

note {clean, 20dB, 15dB, 10dB} respectively. Parenthesis indicate

mismatch condition.

Experiment sets B.1 and B.2 use bit-stream based feature vec-

tors: LPC-Cepstra coefficients and MFCC, both derived from the

quantized LSP. Figure 2 depicts the performance of both experi-

ments, where it can be observed that experiment B.1 outperforms

I - 751

➡ ➡



B.2 under clean conditions by 0.11%, however MFCC showed

more robustness under mismatched condition.

Contrasting these results with the ones obtained from conven-
tional MFCC features from waveform (experiment A.2), both bit-

stream based experiments, B.1 and B.2, perform similarly to A.2

under matched condition, while only B.2 yields to comparable re-

sults under mismatched condition.
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Fig. 2. DET plots from experiment sets B.1 and B.2: LPC-Cepstra

and MFCC from quantized LSP.

Clearly, residual information is uncorrelated to spectral infor-

mation, becoming a good candidate to extend our LSP-based fea-
ture vector. Experiment B.3 appends the third bit-stream feature:

logfo to the MFCC vector obtained from LSP, because of its ro-

bustness under mismatched conditions found in experiment B.2.

Figure 3 shows the SV performance for this augmented feature
vector. By comparing Fig. 3 with Fig. 2, we can appreciate the

amount of speaker’s information provided by the pitch.
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Fig. 3. Experiment B.3, augmented feature vector: MFCC from
LSP + log f0

From the EER presented in table 1, we observe that the use of

residual information (pitch) brings an improvement to the SV per-

formance in the range of 16% to 29%, depending on the scenario.

Comparing the results of the bit-stream based SV system pre-
sented in experiment B.3 with the results in experiment A.2 (MFCC

from trans-coded waveform); bit-stream features outperform trans-

coded waveform approach in all scenarios. Additionally, the per-

formance of B.3 under noisy matched conditions is comparable to

experiment A.1 (waveform without coding distortion); while B.3

outperforms A.1 under mismatch conditions.

5. CONCLUSIONS

The robustness of bit-stream features was studied in this paper for

features extracted from G.729 bit-stream, using a cohort approach
for the H1. These features were derived from the quantized LSP

coefficients and the residual in the form of pitch. It was found that

a MFCC-like feature vector obtained from LSP coefficients was

more robust than LPC-Cepstral feature vectors. Augmenting the
MFCC feature vector to include pitch information improved the

performance in some cases up to 29%.

The augmented MFCC + log f0 feature vector outperforms

the conventional approach of extracting MFCC from trans-coded
waveforms under all scenarios, by using a cohort score for H1.
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