
A SESSION-GMM GENERATIVE MODEL USING  
TEST UTTERANCE GAUSSIAN MIXTURE MODELING  

FOR SPEAKER VERIFICATION

Hagai Aronowitz1, David Burshtein2 and Amihood Amir1,3

1Department of Computer Science, Bar-Ilan University, Israel 
2School of Electrical Engineering, Tel-Aviv University, Israel 

3College of Computing, Georgia Tech, USA 
aronowc@cs.biu.ac.il, burstyn@eng.tau.ac.il, amir@cs.biu.ac.il

ABSTRACT 

Test-utterance parameterization (TUP) using Gaussian 
Mixture Models (GMMs) has recently shown to be 
beneficial for speaker indexing due to its computational 
efficiency and identical accuracy compared to classic 
GMM-based recognizers. In this paper we show that TUP 
can also lead to more accurate speaker recognition. On the 
NIST-2004 evaluation corpus, recognition error rate was 
reduced by 8% compared to the classic GMM-based 
algorithm.  Furthermore, we introduce a novel generative 
statistical model for generation of test utterances by 
speakers. This model is incorporated naturally into the 
TUP framework and improves speaker recognition 
accuracy. On the NIST-2004 evaluation corpus, 
recognition error rate was reduced by 15% compared to 
the classic GMM-based algorithm.   

1. INTRODUCTION 

The GMM algorithm [1-3] has been the state-of-the-art 
algorithm for speaker recognition for many years. The 
GMM algorithm calculates the log-likelihood of a test 
utterance given a target speaker by fitting a parametric 
model to the target training data and computing the 
average log-likelihood of the test-utterance feature vectors 
assuming frame independence. In [4] a new speaker 
recognition technique was presented. The idea is to train 
GMMs not only for target speakers but also for the test 
utterances. The likelihood of a test utterance is 
approximated using only the GMM of the target speaker 
and the GMM of the test utterance. 

In [4] we addressed the task of speaker indexing in 
large audio archives. Our motivation for representing a test 
utterance by a GMM was the distributive nature of the 
speaker recognition algorithm based on test-utterance 
parameterization (TUP). The fact that fitting a GMM to a 

test utterance is independent of the target speaker enables 
fitting the GMM during the indexing process (before the 
archive is queried), hence reducing the time complexity of 
searching for a target speaker. In this paper we explore a 
different attribute of the TUP algorithm. We claim that 
TUP is more flexible for implementation of more complex 
generative models than just the simple frame-
independence-based generative model implied by the 
classic GMM algorithm. In addition, we claim that the 
TUP algorithm exploits a-priori knowledge about test 
utterances, namely the smoothness of their distribution. 
Using universal background model (UBM) MAP-
adaptation for fitting the GMM exploits additional a-priori 
knowledge. Therefore there is a potential for exceeding 
the classic GMM's accuracy. 

In this paper we suggest a novel generative model for 
generation of test utterances by speakers. We model each 
speaker by a prior distribution over all GMMs, and assume 
that at the beginning of a spoken session a GMM is 
selected from the speaker's prior distribution. The frames 
are generated independently using the selected GMM. The 
suggested generative model is a generalization of the 
simple generative model used by the classic GMM system 
where the prior distribution assigns a non-zero probability 
only to a single GMM. The motivation for the new model 
we present is that there is apparently considerable intra-
session dependency that may be attributed to channel, 
noise, and temporary speaker characteristics (mood, 
fatigue, etc.). It is reasonable to assume that these factors 
are constant during a single session but change between 
sessions. 

 In this paper we propose a simple prior distribution 
over the GMM space and present an algorithm to train this 
distribution and use it to compute the likelihood of a test 
utterance given a target speaker.  

The organization of this paper is as follows: we 
overview the TUP-based speaker recognition algorithm in 
section 2. We present the new generative model in section 
3. Section 4 describes the experimental corpus, the 
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experiments, and the results. Finally, section 5 presents 
conclusions and proposed future work. 

2. GMM SCORING USING TEST UTTERANCE 
PARAMETERIZATION 

In this section we overview the TUP based speaker 
recognition algorithm. Our goal is to simulate the 
calculation of the log-likelihood of a test utterance X given 
a GMM Q by using a GMM fitted to the test utterance. 
The log-likelihood of X given Q is calculated in equation 
(1): 
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2.1. GMM simulation 

The vectors x1,…,xn of the test utterance are acoustic 
observation vectors generated by a stochastic process. Let 
us assume that the true distribution of which the vectors 
x1,…,xn were generated by is P. The average log-likelihood 
of an utterance X of asymptotically infinite length |X| 
generated by the distribution P is given in equation (2): 
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2.2. Estimation of distributions Q and P

We assume that the test utterance is generated using a true 
distribution P. In [4] we estimated P by adapting the UBM 
using MAP. In this paper we also tried to estimate P and Q
using several EM-iterations with the UBM used as the 
prior distribution for each iteration. 

2.3. Calculation of ( ) ( )( )dxQxPx
x
∫ PrlogPr
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P
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P/Q. 
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di ,, ,µµ : The dth coordinate of the mean vector of the ith/ 

jth Gaussian of distribution P/Q. 
Q

dj
P
di ,, ,σσ : The dth coordinate of the standard deviation 

vector of the ith/jth Gaussian of distribution P/Q. 
G:               The number of Gaussians of distribution P.
dim:            The dimension of the acoustic vector space.
C1-C3:        Constants. 

In [4] we show that the average likelihood of an utterance 
X given a target speaker Q can be approximated using 
equation (3): 
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In [4] we have shown an efficient technique for calculating 
the right hand side of equation (3). 

2.4. Global variance models 

Global variance GMM models are GMMs with the same 
diagonal covariance matrix shared among all Gaussians 
and all speakers. Using global variance GMMs has the 
advantages of lower time and memory complexity and can 
also result in better accuracy as can be seen in section 4. 
Applying the Global variance assumption to equation (3) 
results in a much simpler equation (4): 
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2.5. Analyzing the role of Gaussian weights 

For improved time complexity it may be very appealing to 
use the non-adapted weights of the UBM for every speaker 
and test utterance or even set all weights to a constant.  
Several papers such as [5] reported no degradation in 
accuracy when using the UBM's weights for all target 
speakers. We tested the sensitivity of both the baseline 
GMM system and the TUP-based system to using the 
UBM's weights or replacing the weights by a constant for 
the target speaker model (Q). We also tried the same 
techniques for the GMMs fitted to test utterances (P) 
which may be interpreted as normalizing mismatch 
between train and test. Assuming all weights to be constant 
and assuming global variance results in equation (5): 
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3. SESSION-GMM GENERATIVE MODEL 

The classic GMM algorithm assumes that each speaker 
can be modeled by a single GMM. The generative model 
implied is that each frame is emitted by that single GMM 
independently from other frames. Consequently, if 2 
utterances are spoken by the same speaker and are long 
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enough, they should have identical empirical distributions 
(when length approaches infinity). Unfortunately, that is 
not the case. In reality there exist session-dependent 
factors that cause the distribution of different sessions of 
the same speaker to inherently deviate from each other.  

3.1. Suggested generative model 

We define the term session-GMM as the GMM 
distribution used to generate the frames of a single session.  
We model each speaker as a prior distribution over 
session-GMMs. Therefore, the likelihood of an utterance 
X given speaker S is: 

( ) ( ) ( )∫=
GMM

dGMMSGMMGMMXSX PrPrPr (6) 

Correspondingly, the likelihood of an utterance X given 
the UBM is: 

( ) ( ) ( )∫=
GMM

dGMMUBMGMMGMMXUBMX PrPrPr (7) 

In order to develop simple and tractable training and 
scoring algorithms we approximate equations (6, 7). We 
assume that the distribution Pr(X|GMM) is much sharper 
than distributions Pr(GMM|S)  and Pr(GMM|UBM). 
Therefore, defining: 

( ){ }GMMXP
GMM

Prmaxarg= (8) 

Equations (6, 7) can be approximated: 

( ) ( )SPSX PrPr ≅ (9) 

( ) ( )UBMPUBMX PrPr ≅ (10) 

Note that assuming that distribution Pr(GMM|S) is much 
sharper than distribution Pr(X|GMM) results in the classic 
GMM algorithm. 

3.2. Generative model for a session-GMM 

According to our experimental results (section 4) each 
session-GMM is represented by a global variance model 
with equal weights. Therefore we only have to model the 
means on the GMM. We assume that the dth coefficient of 
the mean vector of the ith Gaussian of speaker S distributes 

normally with a mean S
di,µ  and a variance ( di,σ )2. Note 

that we chose the variance to be speaker-independent 
because currently we want to avoid using several training 
sessions per speaker. 

3.2. Training the prior distribution models 

In order to train the means of the distribution { S
di,µ } we 

train a GMM QS for target speaker S and the means of QS

are the Maximum Likelihood estimate for { S
di,µ }. 

In order to train the speaker-independent standard 
deviations { di,σ } we take pairs of same speaker sessions 

from a development corpus. For each pair we train GMMs 
and calculate the difference of the corresponding means of 

the GMMs: 2
,

1
,, dididi µµδ −= . di,δ  is a random variable 

with zero mean and variance= 2
, )(2 diσ . Therefore we can 

estimate di,σ  from { di,δ } calculated over pairs of 

different speakers. 

3.3. Calculation of  ( ){ }GMMXP
GMM

Prmaxarg=

P is estimated using MAP adaptation of the UBM model. 

3.4. Calculation of ( )SXPr , ( )UBMXPr

According to equations (9, 10), the log-likelihood of 
utterance X given speaker S is presented in equation (11): 
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The likelihood of utterance X given the UBM is similar to 
equation (11) with trivial modifications. 

4. EXPERIMENT AND RESULTS 

4.1. The SPIDRE and the NIST-2004 corpuses 

The GMM baseline and the TUP system were first tuned 
on the SPIDRE corpus [7]. Experiments were done on the 
NIST-2004 speaker evaluation data set [8]. The primary 
data set was used for selecting both target speakers and 
test data. The data set consists of 616 1-sided single 
conversations for training 616 target models, and 1174 1-
sided test conversations. All conversations are about 5 
minutes long and originate from various channels and 
handset types. In order to increase the number of trials, 
each target model was tested against every test session. 
The SPIDRE corpus was used for training the UBM, for 
training the speaker-independent variances of the prior 
distribution models and for development data. 

4.2. The baseline GMM system 

The baseline GMM system in this paper was inspired by 
the GMM-UBM system described in [1-3]. A detailed 
description of the baseline system can be found in [4]. The 
baseline system is based on an ETSI-MFCC [6] front-end 
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+ derivatives and an energy based voice activity detector. 
In the verification stage, the log likelihood of each 
conversation side given a target speaker is divided by the 
length of the conversation and normalized by the UBM 
score. The resulting score is then normalized using z-norm 
[2].  

4.2. Accuracy of the TUP system compared to the 
GMM baseline system 

In table (1) we summarize selected results of our 
experiments on the TUP system compared to the baseline 
system.  

Miss probability (in %) 
fa=1% fa=5% fa=10%

Baseline GMM 43.1 27.6 19.3 
GMM non-GVAR 46.2 27.9 20.1 
TUP 44.5 25.9 19.5 
TUP + EM training 41.9 25.2 18.1 
TUP + no weights for 
parameterization of test 
utterances 
(Error reduction 
compared to baseline) 

40.1 

(7%) 

25.3 

(8%) 

17.8 

(8%) 

Table 1: Results of selected TUP experiments compared to 
the baseline GMM system. 

Note that the classic non-global variance GMM system 
performed worst than the global variance system. The 
results of the TUP system are very similar to the results of 
the baseline GMM.  

4.2.1. EM training 
EM training does improve performance when training 
GMMs for test utterances (3-7% reduction in 
misdetection). Trying to train models for target speakers 
using the EM algorithm degrades accuracy for both the 
baseline system and the TUP system.  

4.2.1. Constant weights 
Using constant weight for parameterization of test 
utterances improves performance (2-10% reduction in 
misdetection). Trying to use the same technique for target 
speaker models or just using the non-adapted weights of 
the UBM degraded accuracy for both the baseline system 
and the TUP system. 

4.3. Accuracy of the session-GMM generative model  

In table (2) we present results for the session-GMM 
generative model compared to the baseline GMM. 

Miss probability (in %) 
fa=1% fa=5% fa=10%

Baseline GMM 43.1 27.6 19.3 
Session-GMM 
generative model 

37.2 23.3 16.7 

Error reduction 14% 16% 13% 

Table 2: Results of the session-GMM generative model 
compared to the baseline GMM system. 

5. CONCLUSIONS 

We have proposed two speaker recognition algorithms: a 
modified TUP based algorithm and a session-GMM-
generative-model-based algorithm. The first one reduces 
recognition error by about 8% in various false acceptance 
rates and the second one reduces recognition error by 
about 15%. The Session-GMM generative model we 
implemented was a simple one and we intend to explore 
more complex models, for example by modeling 
correlation between the Gaussian means. 
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