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ABSTRACT

Estimating and evaluating confidence has become a key

aspect of the speaker recognition problem because of the

increased use of this technology in forensic applications.

We discuss evaluation measures for speaker recognition

and some of their properties. We then propose a frame-

work for confidence estimation based upon scores andmeta-

information, such as utterance duration, channel type, and

SNR. The framework uses regression techniqueswith multi-

layer perceptrons to estimate confidence with a data-driven

methodology. As an application, we show the use of the

framework in a speaker comparison task drawn from the

NIST 2000 evaluation. A relative comparison of different

types of meta-information is given. We demonstrate that

the new framework can give substantial improvements over

standard distribution methods of estimating confidence.

1. INTRODUCTION
Bayesian methods have become a popular method of ap-

proaching speaker recognition in a forensic setting [1, 2].

Some of this success is due to the fact that Bayesian meth-

ods aim to produce human interpretable scores. For speaker

verification in the Bayesian approach, the starting point is

hypotheses, ω = 1 and ω = 0, corresponding to the target
speaker present or not present, respectively, and evidence

E which has bearing on the hypotheses. The a posteriori
probability p(ω = 1|E) is calculated using Bayes rule,

p(ω = 1|E) =
π1p(E|ω = 1)

π0p(E|ω = 0) + π1p(E|ω = 1)
, (1)

where we have used the convention πi = p(ω = i). The πi

are usually referred to as the priors or the prior probabilities.

We call the probability p(ω = 1|E) the confidence in the
hypothesis ω = 1.

∗This work was sponsored by the Department of Defense under Air
Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions,
and recommendations are those of the authors and are not necessarily en-
dorsed by the United States Government.

The Bayesian approach to inference includes several

facets that are interesting and relevant to speaker recogni-

tion. First, the Bayesian approach provides a systematic

way of incorporating prior knowledge and cost into the de-

cision process. Second, the Bayesian methodology provides

an interpretation of probability as degree of belief. This is

especially important in selecting priors where one can use

subjective or objective approaches. For the latter method,

one tries to pick uninformative priors that do not bias a de-

cision toward personal belief [3]. Finally, Bayesians have

done an extensive amount of work on evaluating confidence.

This work has come about since the Bayesian approach en-

courages elicitation of probabilities, rather than hard deci-

sions. An introduction to some of the evaluation frame-

works is given in [4].

We note that the Bayesian approach is an interpreta-
tion of probability. Probability theory is rigorously defined
axiomatically through Kolmogorov’s measure theory meth-

ods [5]. For convenience, we use Bayesian language for

discussion, but it should be noted that other methods of in-

terpretation (e.g., frequentist) may be more appropriate in

some applications.

Our goal in this paper is to consider methods for esti-

mating and evaluating confidence, p(ω|E). In many cases,
E includes a plethora of information available in the recog-
nition process. For the purposes of this paper, we limit our-

selves to information automatically determined in the pro-

cess of speaker recognition. E typically includes scores
from several classification systems, such as a Gaussian mix-

ture model (GMM) or Support Vector Machines (SVMs) as

well as meta-information typically not explicitly used in the

final decision process—channel labels, duration, SNR, etc.

Prior work has considered this meta-information for im-

provement of speaker recognition accuracy, threshold sta-

bilization, and other types of confidence [6, 7, 8]. We

show that meta-information can be used in a unified frame-

work for simultaneously improving accuracy and a posteri-
ori probability confidence estimation.
The outline of our paper is as follows. In section 2,

we review a standard baseline approach to estimating con-
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fidence. Next, section 3 discusses methods and provides

insight into confidence evaluation. Section 4 provides our

framework for estimating confidence. Finally, Section 5

shows experiments using this method on a NIST evaluation.

2. CONFIDENCE ESTIMATION BASELINE
For this paper, we consider a slight variant of the speaker

verification task common in forensic work—speaker com-

parison. That is, given two utterances, we want to find

the confidence that the speakers are the same in both

utterances—hypothesis ω = 1. From this, we also obtain
the probability of the hypothesis, ω = 0, that the two speak-
ers are different.

One approach to this problem is to apply a speaker ver-

ification system to the task. For utterance i, we train a
speaker model, mi. We then apply the speaker model mi

to utterance j, j �= i, to obtain a score, si. A typical

raw score for this system would be the symmetrized score,

s = 0.5s1 + 0.5s2. In order to estimate confidence, a base-

line strategy would be to model the score distribution con-

ditioned on a hypothesis as Gaussian; i.e., we have

p(s|ω = i) =
1√

2πσi

e
− (s−mi)

2

2σ2
i . (2)

The likelihood ratio, LR, is given by

LR =
p(s|ω = 1)
p(s|ω = 0)

. (3)

The a posteriori probability is then a slight rearrangement
of (1),

p(ω = 1|s) =
1

1 + (π0/π1)(1/LR)
. (4)

There is some ambiguity in this approach, since we have

to determine which score to model as Gaussian. A natural

candidate for a GMM is the average log likelihood ratio of

the target speaker score to the universal background model

score [9]. This score has a range of (−∞,∞) and is pro-
duced by a sum of many (assumed) independent random

variables—the log-likelihood ratio score at each frame.

This simple approach can be improved by more ad-

vanced distributional modeling—e.g., Parzen estimators or

GMMs of the score distribution. Since the score distribu-

tions are known to be non-Gaussian (e.g., [10]), this will

certainly improve estimation of LR. A difficulty arises
when we want to incorporatemeta-information into the con-

fidence estimation process—what distribution do we select

to model the joint distributions between the score and meta-

information? Rather than solve this problem, we propose a

discriminative approach in section 4.

3. EVALUATING CONFIDENCE
The overall goal of confidence evaluation is to rank different

confidence estimators using a numerical measure of good-

ness. The problem has been studied in statistics [11, 12],

meteorology [13], and in speech processing [4, 14].

Confidence evaluation is closely related to confidence

elicitation [11] and Bayesian methods. Suppose a weather

forecaster gives a certain probability of rain tomorrow. How

can we be sure that the forecaster is giving his best estimate

of probability according to his beliefs and not hedging to

improve some other criterion (e.g., salary)? Another ques-

tion is, if there are multiple forecasters, then who is the best?

A solution to the problem presented is to use strictly
proper scoring rules. A scoring rule is a method of as-
sessing the quality of a forecaster. That is, suppose that

given the evidence, the forecaster gives a confidence es-

timate q(E), then a scoring rule assigns a number M(q)
which reflects the quality of the estimate. Since E and ω
are random variables, M(q) nominally depends on the ac-
tual distribution p(E, ω). A strictly proper scoring rule is
one for which the only maximizing value ofM(q) is when
q(E) = p(ω = 1|E). Thus, a strictly proper scoring rule
encourages the forecaster to elicit his personal beliefs.

Numerous strictly proper scoring rules exist. We choose

a rule based upon information theoretic measures—the nor-

malized cross entropymetric (NCE). NCEmeasures the rel-

ative reduction in uncertainty over a baseline. For the case

when the baseline is the entropy of the hypothesis, we have

NCE(q) =
H(ω) − E[− log2 |q(E) + ω − 1|]

H(ω)
, (5)

where H(ω) is the entropy of ω and E[·] denotes expecta-
tion with respect to p(E, ω). H(ω) represents the baseline
where the only information we have is the match prior, π1.

Calculating NCE in (5) is straightforward. We take the

true trials and false trials and calculate

Hcond = − π1
1
Nt

Nt∑

i=1

log2(q(E
t
i ))

− π0
1
Nf

Nf∑

i=1

log2(1 − q(Ef
i )),

(6)

where the first sum in (6) is over true trials and the second

sum is over false trials. Then NCE is

NCE(q) =
h(π1) − Hcond

h(π1)
, (7)

where h(·) is the entropy function h(p) = −p log2(p) −
(1 − p) log2(1 − p).
The optimal (maximum) value for NCE occurs when

q(E) = p(w = 1|E). Then,

NCE(p) =
H(ω) − H(ω|E)

H(ω)
, (8)

so the maximum value of NCE corresponds to the relative

reduction in uncertainty in bits when E is known.
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It is important to note that NCE is sensitive to the scale

of the confidence. If the confidence is close to 0 for a true
trial or close to 1 for a false trial, a large penalty is incurred.
Also, if a confidence estimator gives values close to 0.5 all
of the time, thenHcond = 1, which makes NCE ≤ 0.
Another interesting baseline is to evaluate the NCE for

a hard decision approach. Suppose we know the threshold

for the equal error rate (EER). Then given a score above the

threshold, we produce a confidence of (1-EER). Below the

threshold, we produce a confidence of EER. Then, a simple

calculation shows that Hcond in (6) is h(EER). We could
use this in (5) instead of H(ω), if we wanted a more infor-
mative baseline. A key point of exploring the hard decision

baseline is that it clearly shows that NCE is influenced by

the accuracy of the system. Thus, improvements in NCE

can be made by more accurate modeling of the distributions

in the LR (3) or by just improving system accuracy.

4. A FRAMEWORK FOR CONFIDENCE
ESTIMATION

For confidence estimation in the speaker comparison prob-

lem described in Section 2, there are many sources of infor-

mation. Scores from the train/test process are available, s1

and s2. Scores from other classifiers may be available. In

addition, various meta-information is available—duration

of the utterances, channel labels (either automatically or

manually generated), SNR estimates, and numerators and

denominators of log likelihood ratios. All of this informa-

tion contributes to confidence estimation.

To perform confidence estimation using all of the men-

tioned sources of information, we propose using a multi-

layer perceptron (MLP), see Figure 1. Inputs to the MLP,

x, include the scores and meta-information previously de-
scribed. The model parameters of the MLP (including the

biases) are specified by a vector,w.
The MLP is optimized using a training set labeled with

truth. We train the MLP using the same cross-entropy cri-

terion as the NCE. A well-known result [15] is that training

with this criterion yields approximations to the a posteriori
probability, p(ω = 1|x). Thus, the output of the MLP, y =
f(x,w), estimates the desired probability, p(ω = 1|E), as-
suming that the evidence is x.
As an aside, we mention that MLP training criteria and

strictly proper scoring rules are closely related. Applying

a cross-entropy training criterion to the MLP training “en-

courages” it to elicit confidences.

We use the Netlab tool [16] for training the MLP; a

scaled conjugate gradient algorithm is used for optimiza-

tion. We ensure that the training priors are controlled by

sampling with replacement from the training set. We con-

vert the output of the MLP to LR using the equation

LR =
πtrain

0

πtrain
1

p(ω = 1|x)
1 − p(ω = 1|x)

, (9)

…bias

x1 x2 xn

bias …

y

Fig. 1. Multi-layer perceptron for confidence estimation

where the superscript train indicates the training priors. The
likelihood ratio, LR, in (9) can be converted back to a con-
fidence estimate using the desired priors, πi, and (4). A

convenient fact of this approach is that if the testing pri-

ors change, we do not have to retrain the MLP. As a fi-

nal processing step, we limit the posterior probability to

[0.01, 0.99].
Symmetry may be a concern when using the MLP. That

is, if the role of the compared utterances is swapped, then

the confidence should be the same. One convenient way

of dealing with this issue is to evaluate the MLP twice—

once with the inputs in one order and then swapped—and

average the two outputs. We found this typically improved

the quality of confidence estimation. Alternately, symmetry

can be incorporated in the training process.

5. EXPERIMENTS
For evaluation, we used the male subset of 3, 483 files from
the training and testing portion of the NIST 2000 speaker

recognition evaluation (which uses Switchboard 2 phases 1

and 2). This evaluation setup gave a set of durations nom-

inally around 30 seconds and 2 minutes. Since our task

was to perform speaker comparison, we scored all possi-

ble combinations of files, resulting in 17, 776 true trials and
6, 046, 127 false trials.
A GMMverification system was used to produce scores.

Front-end processing included 19 MFCCs plus deltas,
RASTA, feature mapping [17], and mean and variance nor-

malization. A 2048 component mixture model was used.
Training was accomplished by Bayesian adaptation of the

means [9]. No additional score normalization was per-

formed by the system (such as Tnorm).

Training for the MLP system was drawn from the

Switchboard 2 phase 3 corpus; note that this is a different

subset of Switchboard than the NIST 2000 evaluation. Ut-

terances were randomly truncated to give diverse durations.

Channel labels were determined automatically in the feature

mapping process [9] and consisted of carbon button, elec-
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Table 1. MLP inputs and dimension for various configurations
MLP1 savg = 0.5s1 + 0.5s2 1

MLP2 si 2
MLP3 si, duration 4

MLP4 si, duration, num and den of GMM LR 8

MLP5 si, duration, channel type 10

MLP6 si, duration, channel type, SNR 12

Table 2. Comparison of NCE in percent for different types of
meta-information. Results are relative change in uncertainty with

respect to a Gaussian distribution baseline

π1 MLP1 MLP2 MLP3 MLP4 MLP5 MLP6

0.01 9.9 10.6 13.2 11.1 14.3 11.9

0.10 15.0 15.6 17.4 14.3 19.6 16.2

0.25 16.1 16.7 18.4 14.7 20.8 17.4

0.50 16.4 17.0 19.0 14.8 21.4 18.3
0.75 16.3 17.0 19.6 14.9 21.5 19.3

tret, and digital cell. SNR was determined using the NIST

stnr tool.

Table 1 shows the various configurations of data sup-

plied to theMLP. TheMLPwas trained with 10 hidden units
except for MLP6, which had 12 hidden units (all have one
hidden layer). The number of hidden units was determined

using a held-out portion of the training set. Note that chan-

nel information was discrete and coded in binary form as

cb = (0, 0, 1), elec = (0, 1, 0), digital = (1, 0, 0).

Results for the various configurations are shown in Ta-

ble 2. As a baseline for the NCE in (5), we used a Gaussian-

distribution-based approach as described in Section 2 rather

than H(ω). We mention that at π1 = 0.5, the distribution-
based method gives a Hcond = 0.489.

Table 2 shows that a non-Gaussian assumption (MLP1)

and duration (MLP3) improve performance substantially

over the base. Slightly helpful are the addition of individ-

ual scores (MLP2) and channel labels (MLP5) to the MLP’s

inputs. Finally, both splitting the GMM likelihood ratio

into numerator and denominator (MLP4) and using SNR

(MLP6) seems to degrade confidence estimation. Overall,

we see the inclusion of meta-information substantially im-

proves confidence estimation.

As mentioned in Section 3, accuracy has an impact on

the NCE. If we evaluate the distribution method with a hard

decision confidence, then h(EER) = h(0.1193) = 0.527.
For the best performing system, MLP5, at π1 = 0.5,
Hcond = 0.384 and h(EER) = h(0.1073) = 0.492. Thus,
if we normalize out the accuracy (i.e., use the hard decision

as a baseline), then the distribution system has an NCE rela-

tive change of 7%, and MLP5 has a relative change of 22%.
In a loose sense, this result shows that the MLP5 is not just

improving accuracy of the system, it is also improving the

presentation by producing better confidences.

6. CONCLUSIONS
We explained and showed examples of evaluating confi-
dence for speaker recognition based upon Bayesian and
NCE methods. We demonstrated that an MLP frame-
work including meta-information effectively handled multi-
condition confidence estimation with performance improve-
ments of> 20% in NCE.
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