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ABSTRACT 

Maximum likelihood multiple subspace transformations 

algorithms, such as Semi-Tied Covariance (STC) and 

multiple Heteroscedastic Linear Discriminant Analysis 

(HLDA), have achieved significant improvement. In STC 

and multiple HLDA, all the Gaussian components are 

classified as multiple components sets. In each set, 

Gaussian components’ full covariance, which is estimated 

by Maximum Likelihood (ML) criterion, is used to 

estimate the linear transformation of this set. However, 

full covariance matrix, which contains large number of 

free parameters, may not be reliably estimated by ML 

criterion. Unreliable full covariance will lead to unreliable 

linear transformation, and will finally lead to poor 

recognition results. There have been several algorithms 

proposed to reliably estimate the full covariance, such as 

mixture of inverse covariance (MIC), SPAM, and 

Hierarchical Correlation Compensation (HCC). In this 

paper, we combine HCC with STC and multiple HLDA. 

Experiments show that standard STC can achieve 12.47% 

word error rate (WER) reduction on RM database, while 

our HCC+STC can achieve 19.32% WER reduction.  

1. INTRODUCTION 

Diagonal covariance matrix implies strong assumption 

that the feature components are independent. In speech 

recognition, even Gaussian mixtures with diagonal 

covariance can model the correlation to some extent; the 

model precision is still limited. To overcome this problem, 

feature-space based linear transformation is used for 

decorrelating the feature. Feature-space based linear 

transformation includes the Karhunen-Loeve transform 

[1], linear discriminate analysis (LDA) [2], Maximum 

Likelihood Linear Transform (MLLT) [3] and heteroscedastic 

LDA (HLDA) [4]. However, it is hard to find a unique 

transform which can de-correlate all the features for all 

the classes in some complex tasks such as LVCSR. It is 

better to use model-based de-correlation, which allows 

multiple transforms to be used. Two model-based schemes, 

semi-tied covariance matrix (STC) [5] and multiple 

HLDA [6], have been proposed.  

STC and multiple HLDA provide a good framework to 

apply linear transformation tying at any level. In STC and 

multiple HLDA, all the Gaussian components are 

classified as multiple components sets. In each set, full 

covariance of Gaussian components, which is estimated 

by Maximum Likelihood (ML) criterion, is used to 

estimate the linear transformation of this set. In this paper, 

we tie linear transformations at four different levels: 

global, monophone, monophone-state and tied-triphone 

state It is expected that more transforms lead to higher 

accuracy because the model with more transforms is more 

precise. However, full covariance matrix, which contains 

large number of free parameters, may not be reliably 

estimated by ML criterion. Unreliable full covariance will 

result in poor estimation of linear transformation, and will 

finally lead to higher error rate.  

Several approaches have been proposed to estimate full 

precision matrices based on a linear combination of a set 

of global prototype full precision matrices, such as 

mixtures of inverse covariances (MIC) [7], SPAM [8], 

modeling covariance by basis expansion [9]. Lin et al [10] 

also proposed a Hierarchical Correlation Compensation 

(HCC) algorithm to reliably estimate the full covariance 

of all Gaussian components. The experiment showed that 

all of them could result in robust estimation of the full 

covariance for Gaussian components. In this paper, we 

combine Hierarchical Correlation Compensation (HCC) 

with STC and multiple HLDA. In our experiments, the 

standard STC and multiple HLDA can achieve 14.2% 

error rate reduction on RM database, while our 

HCC+STC/multiple HLDA can achieve 23.9% error rate 

reduction. 

The paper is organized as following: Section 2 

describes two model-based linear transformations STC 
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and multiple HLDA. In section 3, we combined HCC with 

STC and multiple HLDA to get better transforms, and 

corresponding experiments results are shown in section 4. 

Finally, in section 5, the conclusion and the future work 

are presented. 

2. STC AND MULTIPLE HLDA 

In this section, we briefly introduce STC and multiple 

HLDA. In semi-tied covariance, each covariance matrix 

consists two elements, a component specific diagonal 

covariance element
( )m

diagΣ  , and a semi-tied class-

dependent linear transformation 
( )mF γ

. The form of the 

m ’th Gaussian components’ full covariance matrix 

represented as 
( ) ( )( ) ( )m m Tm m

diagF F
γ γΣ = Σ                       (1) 

( )mF
γ

can be tied in different level. 

Maximum likelihood criterion is used to estimate the 

STC transform matrix. Firstly, define the mean and 

covariance of the m ’th Gaussian components as 
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,where ( )( ) ( ) | ,m m Tp q M Oγ τ τ= is the posteriori 

probability of observation ( )o τ  belonging to 

component m .

Linear transformation 
( )mF
γ

 is estimated by maximize 

the auxiliary function 
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where
( ) ( ) 1m mA F
γ γ −= , and

( )G γ
is the components set 

that shares the same linear transformation. The details of 

estimation formulae for
( )A γ

 can be found in [5]. 

    Once the linear transformations is available, the 

covariance used for decoding is given by  

( )( ) ( ) ( ) ( )m m T

diag diag A W Aγ γ=   (5) 

For multiple HLDA, the feature space is split into two 

subspaces after transformation; the useful dimensions and

nuisance dimensions. Class-specific covariance matrix is 

used for useful dimensional, and a simple single Gaussian 

component nuisance model is used for nuisance 

dimensions.  

     ML estimation is used to estimate the multiple HLDA 

transforms. The auxiliary function for multiple HLDA [6] 

is
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, where p  is the useful dimension, 
)(rA  is linear 

transformation, 
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, T is the global full covariance matrix of the class 

( )( )( ) ( )1
( ) ( )

T
g gT o o

N τ
τ µ τ µ= − −           (8) 

,
( )gµ is the global mean of this class. The detail of 

estimation formulae for A  can be found in [6]. 

For both of STC and multiple HLDA, the component 

specific full variance matrix 
( )mW  plays an important 

role in estimating transforms. There is an assumption that 

if the full covariance matrix can not be reliably estimated, 

then the linear transformation will not be robust. We 

proved the assumption by the experiments which will be 

presented in section 4. 

3. HIERARCHICAL COVARIANCE 

COMPENSATION 

In STC and multiple HLDA, the full covariance of 

Gaussian components, 
( )mW , is estimated by Maximum 

Likelihood (ML) criterion. However, full covariance 

matrix, which contains large number of free parameters, 

may not be reliably estimated by ML criterion. Unreliable 

full covariance will result in poor estimation of linear 

transformation, and will finally lead to higher error rate.  

Several approaches have been proposed to directly 

estimate full precision matrices, such as mixtures of 

inverse covariances (MIC) [7], SPAM [8], modeling 

covariance by basic expansion [9]. Lin et al [10] also 

proposed a Hierarchical Correlation Compensation (HCC) 

algorithm to reliably estimate the full covariance Gaussian 

components. Experiments showed all of them could 

reliably estimate the full covariance of Gaussian 

components. 

The general idea in HCC is to build a hierarchical tree 

in the covariance space, and use each leaf node to 

represent a Gaussian component in the model set. Since 

there are no enough data in each leaf node to estimate full 

covariance, a linear combination is employed to represent 

the full covariance in leaf nodes by covariance matrix of 

all its parent nodes. 

The outline of HCC is: 
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1. Train a baseline model set of tri-phone CDHMMs 

with diagonal covariance matrices. The mean and the 

covariance are estimated using maximum likelihood 

criterion. We will keep the structure, the mixture 

weight, and the mean vectors of the baseline model 

set unchanged in following stages.  

2. All the tied- states are used to build a tree. The tree 

can be built according to the full covariance’s K-L 

distance with the top-down clustering. Or we can use 

the decision tree generated from the previous baseline 

model training stage. We use tied-states as base 

elements in tree-building since the full covariance 

matrices of Gaussian components may not be reliable 

for the clustering. After the tied-state tree is built, for 

each tied-state node we expand all its Gaussian 

components as another layer of its child.  

3. Estimate a covariance matrix for each node in the tree. 

For all leaf nodes, we estimate diagonal covariance 

matrices. For each upper-level node, a full covariance 

matrix is estimated from all of its child nodes.  

4. For each Gaussian component in a leaf node, the 

estimated full covariance matrices of all the nodes 

along the upward path from the leaf node to the 

global are used to estimate the off-diagonal 

components in its full covariance matrix. Based on a 

linear combination scheme, where the combination 

weights are estimated by the maximum likelihood 

criterion. 

For the i th Gaussian component, all intermediate nodes 

along the upward path from this node to the root is 

defined as the set 

=Ψ
root

sisi
i

....,...,

,parentssparent'',parent'
)(      (9) 

   Thus the new full covariance i
ˆ of the i th Gaussian 

components is estimated by 

( ) [ ]
Ψ∈

−+=
)(

,,, )(ˆ

im

mnodemnodemiii diagdiag λ                           

After above four steps, we obtained the new full 

covariance matrices. 

    To combine HCC with STC and multiple HLDA, we 

can simply apply the full covariance estimated by HCC in 

the objection function of STC (Equ 4) and multiple 

HLDA (Equ 6).  

4. EXPERIMENTS 

4.1 Experiment setup  

 A standard speech recognition task, the DARPA 

Resource Management (RM) task, is used. A total of 3990 

sentences is used for training. The baseline system uses 

mixture Gaussian densities with 1603 tied HMM states 

determined by standard decision tree. Cross word triphone 

models that ignore the word boundaries in the context are 

used. The baseline system is produced by standard 

iterative mixture splitting using four embedded training 

per mixture configuration. 6 mixture components with 

diagonal covariance are trained for every tied-triphone 

state.  A total of 1199 sentences with a simple word-pair 

grammar are used for decoding and the word error rate of 

the baseline system is 4.09%. 

4.2 Tying  on different levels 

STC and multiple HLDA provide good frameworks to tie 

the linear transformation at different levels. Here we use 

four different tying methods:  

• Global: all the Gaussian components share the same 

transformation matrix. 

• Monophone: all the Gaussian components belong to 

the same monophone share the same transformation 

matrix. There are totally 49 monophone. 

• Monophone state: There are 3 states for each 

monophone (except silence and sp),  there are totally 

143 monophone states. 

• Tied-triphone state: Tied-triphone stated is the leaf 

nodes of the tree-based clustering. There are totally 

1603 tied-triphone states, so totally 1603 linear 

transformation matrices are used different tying is 

also shown in Fig 1. 

Layer 1

(global)

Layer 2

(monophone)

…

Layer 3

(monophone state)

Layer 4

(tied-triphone state)

Layer 5

(Gaussian Mixture)

…

…

…

Figure 1. Tree structure: HMM structure 

4.3 STC+HCC 

     

Table 1 shows the performance of STC+HCC at different 

levels, comparing with that of STC only. If we only using 

global transform, the word error rate (WER) of 

calculating 
( )mW  directly by (4) is 3.94%, and that of 

using HCC to calculate new full covariance is 3.91%. 

There is no main difference. However, with the increase 

of linear transforms number, the performance of 

STC+HCC significantly outperforms that of STC. When 

we tie the linear transformations at tied-triphone state, the 

word error rate of STC is 5.74%, which is much higher 

I - 707

➡ ➡



than that of baseline. However, we get 3.30% word error 

rate (19.32% ERR reduction) by using STC+HCC at the 

same level. That means the performance improved 

consistently with the increase of linear transformation 

number. 

Table 1. Word error rate of STC and STC+HCC on RM 

database (The baseline word error rate 4.09%) 

word error rate 
different tying 

transform 

number STC STC+HCC

Global 1 3.94% 3.91% 

Monophone 49 3.79% 3.77% 

Monophone 

state
143 3.59% 3.40% 

Tied-triphone 

state
1603 5.74% 3.30% 

4.4 Multiple HLDA+HCC 

   Table 2 shows the performance of multiple 

HLDA+HCC  comparing to multiple HLDA. When we tie 

the linear transformations at tied-triphone state, the word 

error rate of multiple HLDA is 5.62%, which is much 

higher than that of baseline. However, we get 3.50% word 

error rate (14.43% ERR reduction) by using multiple 

HLDA+HCC at the same level. We can also that the 

performance improved consistently with the increase of 

linear transformation number. 

Table 2. Word error rate of multiple HLDA and multiple 

HLDA+HCC on RM database (source dimensions is 39 

and destination dimensions is 30) , The baseline word 

error rate 4.09%. 

word error rate different 

tying 

transform 

number MHLDA MHLDA+HCC

Global 1 3.85% 3.99% 

Monophone 49 3.9% 3.79% 

Monophone 

state 
143 3.58% 3.65% 

Tied-triphone 

state 
1603 5.62% 3.50% 

5. CONCLUSIONS AND FUTURE WORK

In this paper, we compared the performances of STC and 

multiple HLDA when tying the transformations at 

different levels. By combining HCC algorithm with STC 

and multiple HLDA, we improved the robustness of linear 

transformation, especially when the number of linear 

transformation matrices is large.  

      Experiments show that standard STC can achieve 

12.47% error reduction on RM database, while our 

HCC+STC can achieve 19.32% error rate reduction. In 

the future, we will the test the effective of this 

combination on larger database. 
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