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ABSTRACT

In this paper, we present a greedy EM (GEM) method for

training Gaussian mixture density (GMD) based acoustic models. 

In the proposed approach, starting from a single Gaussian, GMD

is built up by sequentially adding new components. Each new 

component is globally selected to avoid local optima. The

sequential procedure offers more control over the model

structure to achieve better coverage of data. GEM also provides 

a natural way of integrating information criterion for model

complexity selection. Experimental results on WSJ task show 

that the new method performs consistently better than the

conventional method in speech recognition word error rate. 

1. INTRODUCTION 

The EM algorithm [1] has been widely used in acoustic model 

training of Gaussian mixture densities for speech recognition.

However, EM does not guarantee convergence to global optima 

and its solution is dependent on the initialization of mixture

components. In Gaussian mixture modeling of phone units, local 

optima often involve overlapped mixture components in over-

populated center regions and too few components near class 

boundary. A further problem associated with EM is determining 

the optimum number of mixture components. Since more 

complex models usually result in higher likelihood for training

data, current systems often use a fixed, empirically determined 

number of components. 

In this paper, we introduce a greedy EM (GEM) algorithm 

for training Gaussian mixture density (GMD) based acoustic 

models to overcome the above problems. GEM is based on 

recent works in the statistics literature. Li and Barron stated that

a mixture model can be recursively constructed in a greedy

manner, i.e., start with a single component and sequentially add 

in another optimal component, and the resulting model will

perform as well as the true mixture density that generates the 

data [2]. In order to efficiently locate the optimal new 

component, a method which selects the best component from 

only a set of pre-located candidates was proposed by Verbeek 

and Vlassis [3]. Practically, GEM reduces the problem of 

learning a k-component mixture model to a sequential learning

of two-component model, and it offers a mechanism of 
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dynamically allocating new components outside the

overpopulated center regions. GEM also allows more control on 

model structure by examining the location and shape of each 

new component before mixing it into an existing mixture and by

terminating the greedy learning process when certain criterion is

no longer met.

To illustrate the different effects of EM and GEM in

acoustic modeling, in Figure 1, we show the 16-Gaussian 

component mixture densities for a sub-phonetic unit /dh/ 

generated by the two methods. The densities are plotted against

the first two principle components derived from 39 speech

feature components (details are discussed in section 5).

Compared with the EM derived model, the GEM derived model

has less overlaps in center regions and has more components 

located along the class boundary.

EM GEM

Figure 1.Two mixtures of 16 Gaussians obtained by EM & GEM. 

In order to apply GEM to acoustic model training of GMD 

based HMMs, a three-level optimization/selection method is 

developed. Evaluation experiments on WSJ 20K Nov 92 task is 

performed on GEM in comparison with the conventional EM. 

The results show that the proposed GEM approach leads to 

consistent reduction in word error rates.

The organization of the rest of the paper is as follows. In

sections 2 the greedy EM algorithm is discussed. In section 3, 

the greedy EM algorithm is extended for HMM training. In 

section 4, algorithm implementation and integration with 

Bayesian Information Criterion (BIC) [4] are presented. Test

results are given in section 5, and conclusions are made in 

section 6. 

2. GREEDY EM FOR GAUSSIAN MIXTURES

Let
TxxX ,1

be i.i.d observations drawn from a mixture

of multivariate normal densities of size K. The likelihood 

function is with
T

t

kt

K

k

k xNXf
1 1

|| kkk , . The 

model parameters can be estimated by the well-known EM 

algorithm [1], where equations (1)-(4) are iteratively applied to

all components k = 1, 2,…,K until convergence.
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In contrast to the conventional EM, the greedy EM starts 

from a k-component mixture and learns the (k+1)-component

mixture by finding an optimal new component. Given a k-

component mixture , adding a new component xfk 1; kxN

yields the new mixture :xfk 1

10,;1 11 kkk xNxfxf                 (5)

In this case, is fixed and only the weight and the 

parameter

xfk

1k
need to be estimated. The iterative estimation of 

and
1k

is therefore called partial EM. Since only one 

component needs to be updated in each iteration, partial EM

requires much less computation than full EM, and therefore, a

global search can be employed in partial EM for proper

initialization of each new component. The greedy EM algorithm

as proposed in [3] can be summarized as the following: 

1. Initialize parameters
1
for the single Gaussian model, 

set k=1.

2. Find a new component 
1k

 and the corresponding

mixing weight by using partial EM, where fk is fixed. 

3. Set
11 |1 kkk xNxfxf , k = k+1.

4. Update fk using EM until convergence (optional). 

5. If stopping criterion is met then exit, else go to step 2. 

The critical part of GEM is step 2, where a global search of 

the new component is made for the purpose of avoiding local

optima. The global search can be approximated by an efficient 

heuristic algorithm that selects the best candidate among an 

appropriate set of pre-generated candidates. The candidates are

obtained by randomly splitting the existing components. Step 4

is not proposed in the original GEM, but it is desirable to tune 

the model parameters after a new component is added. The 

stopping criterion in step 5 can be the maximum allowed number 

of components in each model, model complexity selection 

criterion such as BIC, or cross-validation. The location and 

shape of a new component can also be easily examined at each 

step [3]. More details on stopping criteria will be discussed in 

Section 4. 

3. GREEDY EM FOR HMM

Consider an N-state HMM with parameter set  = ( , A, ),

where  is the set of initial probabilities, A is the set of state 

transition probabilities, and  is the set of parameters of 

emission probabilities. For a sample set
TxxX ,1

, the 

complete data is y = (X, S, l), where S is the sequence of 

unobserved states, and l is the sequence of unobserved mixture 

component indices. As in EM, the auxiliary function in GEM

can be decomposed into three independent component 

functions:
N

i

iiQ
1

0 logˆ, , N

i

iaA aQAQ
i

1

ˆ,ˆ,
, and 

N

i

ii
QQ

1

ˆ|ˆ,
 [5], where ˆ,| xisp tit

. The 

component is in the form of 
i

Q
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where the re-estimation formulas for  and 
1k
of state i can be 

shown to be 
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The GEM procedure is also applicable to the segmental K-

means algorithm [6]. The most likely state sequence is

decoded by the Viterbi algorithm, and the greedy EM algorithm

is used to estimate the parameters  within each state. Let 

*S

x

be an indicator function, with otherwise.

Then the update equations (7)-(10) are reduced to that for the

case of Gaussian mixtures in each state with

,0;0,1 xxx

istit
.

Although both Baum-Welch and segmental K-means

methods can be used for GEM HMM training, the latter is more 

convenient for performing global search of new Gaussian 

components. Although candidates of a new component can be 

globally generated by method of [3], in general, evaluation of 

the new component candidates using an entire set of training

data will result in very high computation cost. An efficient

strategy is to hierarchically divide the task into three levels: 

HMM-level optimization, state-level new component selection, 

and component-level candidate generation, which will be 

discussed in the next section.
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4. APPROXIMATE GEM FOR HMM

The approximate GEM algorithm is developed based on the 

following observations: 

a. The global search for a new component in GEM 

requires evaluation of a set of candidates by training

data, which is unfeasible when the evaluation data set

is large or the number of candidates is large.

b. GEM starts from the coarsest model, i.e., the single

Gaussian model, and introduces finer models 

sequentially. Therefore, it is reasonable to reduce the 

range of training data in candidate evaluation as k gets 

larger, as in the case of sparse EM [7].

c. As shown in Figure 1, placing Gaussian components

along class boundary may result in better coverage of 

data for classification tasks. To enhance this behavior,

the influence on the class boundary from data in the 

center regions needs to be reduced.

The above three observations indicate that it is desirable to 

evaluate the candidates of each new component in a localized

neighborhood and this strategy is employed in the approximate 

GEM to improve training speed and model quality. Computation

cost prohibits using GEM for HMM training on a large training 

data set. Based on ideas in segmental K-means [6] and the

candidate generation algorithm of [3], the proposed approach 

adopts a three-level search and optimization strategy: candidates 

are generated and evaluated within existing components, GMDs

are greedily built for states, and HMMs are finally optimized by

EM. The algorithm is summarized as the following three steps:

1. Train single Gaussian HMMs and segment training

data to states of phone units by Viterbi segmentation. 

2. Use GEM to train GMDs for individual state. 

3. Re-estimate HMMs by conventional EM. 

For each phone state, in order to generate candidates for the 

(k+1)th component, the training data set is quantized into k

disjoint sets: . Then for each 

set , a pair of candidates is generated by randomly splitting

into two disjoint subsets. The data sample means and 

variances in these two sets are chosen as candidate parameters,

and the initial weight for each candidate component is set to be

half of the weight of

xjPiXxQ
kj

i |maxarg:
,...,1

iQ

iQ

iN | . If more candidates are needed

from this component, then the random splitting process is carried 

out repeatedly to obtain the required number of candidates. 

Assuming m candidates are generated from each existing

component, then km candidates are generated for the new 

component. Each candidate is re-estimated by using the partial 

EM. The candidates are first validated by their shapes

(eigenvalues) and volumes (determinants) with pre-defined 

thresholds. Among surviving candidates, the one that gives the 

greatest likelihood increment when mixed into the existing

mixture becomes the new member of the model.

Candidates are evaluated locally by a sparse partial EM. If 

a candidate is generated from the component , then it is 

evaluated only by data of . Specifically, the sparse algorithm

approximates the likelihood of data x as

iQ

iQ

xCpxp' ,

,0; xpQx i
otherwise, where C is a normalizing constant 

taken as 1. Based on this approximation, the updating formulas 

for partial EM are put in the forms of (11-14) [3].  This 

approximation greatly reduces computation cost, and enables 

local measurement of each candidate on its capacity of modeling

local pattern.
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The sequential procedure of adding in Gaussian

components makes it natural to use an information criterion to 

determine the optimum model size. BIC is one of the most

widely used model selection criterion, defined

as nMMXLMBIC log#
2

1
,log , where #(M) is the

number of parameters in the model M, n is the size of the data 

set X, and MXL , is the likelihood of X under M [4]. When 

BIC is used, the GEM procedure terminates if adding in new

component results in a decrease of BIC value. 

As discussed in section 2, an optional step in GEM is the 

EM step after each new component is inserted, which is also 

known as the “retuning” step. This step can also include post-

selection of the “retuned” components.

GEM requires more computation than EM. Denote Tj as the 

size of the data set segmented to phone sate j. Assuming m

candidates are generated from each existing mixture component,

then the cost for one component search is O(mTj ). Adding the 

cost for EM update of fi, which is O(iTj ), the sum is O((m+i)Tj ).

The run time of training a sequence of 1 to k mixture models in 

the phone state is then  if m< k. In total, 

the running time of GEM training will be ,

where the complete training data size is , which is a 

factor of k times slower than conventional EM.
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5. EXPERIMENTS

The approximate GEM algorithm was evaluated on the WSJ 

20K Nov 92 task. The standard training data set (WSJ0+WSJ1) 

including speech of 384 speakers were used. Speech feature

analysis was made at a 10msec frame rate with a 25msec

window-size. Speech feature components included 13 MFCCs

and their first and second derivatives. Cepstral means were 

removed for every utterance. The baseline acoustic model was 
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trained using HTK with a fixed number of Gaussians in each

mixture.

The GEM based acoustic models were trained as the 

following. First, single Gaussian models were trained using 

conventional EM and were tied by phonetic decision tree with 

HTK [8]. Second, a Viterbi forced alignment using the trained 

single Gaussian models was performed to segment training data 

into phone states. Third, GEM models were trained for each tied

state using segmented data, where the maximum allowed 

number of Gaussians for each phone state was 32. The number

of candidates used for each component was 10. As the last step, 

an ordinary embedded EM was applied to all the GEM derived 

models by using the entire set of training data.

For the WSJ task, standard trigram language model 

provided by LDC was used, including 19,982 unigrams, 

3,518,595 bigrams, and 3,153,527 trigrams. Only within-word

triphone acoustic model was tested, even though GEM is equally

applicable to cross-word triphone model. One-pass time-

synchronous beam search was used for decoding speech with 

conservative pruning thresholds optimized for testing.

Experimental results from 333 sentences of the si_et_20

evaluation set are listed in Table 1. Word accuracy achieved 

under the same number of mixture components per mixture

density was compared for baseline and GEM derived models 

(for GEM model, this number is an average over all states). The 

last row of the table also gives the relative rate of error reduction 

(RER).

Mix. size 8 10 12 15 16 17

Baseline 88.37 88.66 88.59 88.84 89.31 89.33

GEM 88.96 88.92 89.14 89.54 89.86 89.77

RER 5.1% 2.3% 4.8% 6.3% 5.1% 4.1%

Table 1.  Word accuracy of conventional EM and GEM 

Over the range of studied model complexity, GEM trained

models consistently gave lower word error rate than EM trained

models, confirming the superior performance of GEM training

over EM. For many states, GEM produced models with smaller 

number of Gaussian components than EM. For example, when 

mixture size was 16, nearly 50% GMDs have less than 16 

Gaussians. This result confirms the fact that different phonetic 

units need models with different complexities under typical

speech model training conditions.

Figure 2 shows a histogram of number of Gaussians in each 

tied state for the GEM case. We can see that there were about 

20% GMDs containing 32 components. These states had large 

training data samples, and the likelihood of the training data in 

general increased as the model structure became more complex.

Therefore, BIC criterion needs to be used to avoid overfitting.

For comparison, BIC-based model selection was performed on 

EM and GEM derived GMD models on a state-by-state basis,

with the maximum number of Gaussians in each state fixed to be 

32. Again, speech recognition experiments were performed to

evaluate the BIC selected models, and the test results are given

in Table 2. 

After BIC model selection, the average numbers of 

Gaussians per state for GEM and baseline models were reduced 

to 15 and 13 Gaussians, respectively. In both cases, the resulting 

models performed better than their without BIC counterparts. 

For the GEM models, the number of states containing 32 

components was reduced by 40%. For the baseline models,

although the maximum possible number of Gaussians was also 

32, the resulting model performed worse than GEM model of

similar complexity without BIC. 

Figure 2. Histogram of number of Gaussians per state 

Mix. Size without BIC with BIC

Baseline 13 88.84 89.10

GEM 15 89.54 89.74

Table 2.  Comparison of word accuracy from BIC results of EM

and GEM derived models 

6. CONCLUSION 

We propose an approximate greedy EM algorithm for acoustic

model training. Partial EM and sparse EM are used in GEM to 

enable better modeling of local data patterns and to speedup 

training process. Experiments conducted on WSJ 20K Nov 92 

task demonstrated that the proposed algorithm consistently

outperformed the conventional EM, and that BIC criterion can 

be naturally integrated into the sequential procedure of model

growth. In future study, we will explore the possibility of using 

spatial information of data distribution to enhance GEM’s 

capability of modeling detailed structures of class boundary.
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