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ABSTRACT

We propose a genetic-based expectation-maximization (GA-
EM) algorithm for learning Gaussian mixture models from
multivariate data. This algorithm is capable of selecting the
number of components of the model using the minimum de-
scription length (MDL) criterion. We combine EM and GA
into a single procedure. The population-based stochastic
search of the GA explores the search space more thoroughly
than the EM method. Therefore, our algorithm enables to
escape from local optimal solutions since the algorithm be-
comes less sensitive to its initialization. The GA-EM al-
gorithm is elitist which maintains the monotonic conver-
gence property of the EM algorithm. The experiments show
that the GA-EM outperforms the EM method since: (i) We
have obtained a better MDL score while using exactly the
same initialization and termination condition for both algo-
rithms. (ii) Our approach identifies the number of compo-
nents which were used to generate the underlying data more
often as the EM algorithm.

1. INTRODUCTION

Finite mixture models [1] are flexible methods for model-
ing complex probability distribution functions. These mod-
els enable statistical modeling of environments with multi-
modal behavior where simple parametric models fail to rep-
resent adequately the characteristics of the data. The stan-
dard approach for learning the parameters of the mixture
model is the EM algorithm [2]. We develop a novel algo-
rithm for finding the optimal number of components as well
as the parameters determining the components of a mixture
model. The MDL criterion is used for selecting the number
of components of the model. Our approach embeds the EM
algorithm in the framework of the GA so that the proper-
ties of both algorithms are utilized. The population-based
stochastic search of the GA explores the search space more
thoroughly than the EM method. Therefore, our algorithm
enables to escape from local optimal solutions since the al-
gorithm becomes less sensitive to its initialization.

2. LEARNING GAUSSIAN MIXTURE MODELS

A finite mixture model p (x|Θ) is the weighted sum of M >

1 components p (x|θm) in R
d, p (x|Θ) =

M∑
m=1

αmp (x|θm),

where x = [x1, . . . , xd]
T is the d-dimensional data vec-

tor, αm corresponds to the weight of each component m =
1, . . . , M . These weights are constrained to be positive αm ≥
0 and

∑M
m=1 αm = 1. For Gaussian mixture models, each

component p (x|θm) is represented as normal distribution,
where each component is denoted by the parameters θm =
{µm,Σm}, the mean vector and the covariance matrix. The
Gaussian mixture is specified by the set of parameters Θ =
{α1, α2, . . . , αM , θ1, θ2, . . . , θM}.
The EM algorithm [2] consists of an expectation step (E-
step) and an maximization step (M-step) which are alter-
nately used until the log p (X|Θ) = log

∏N
i=1 p

(
xi|Θ)

con-
verges to a local optimum, where X =

{
x1,x2, . . . ,xN

}

are N i.i.d. samples. The performance of the EM algo-
rithm depends strongly on the choice of the initial parame-
ters Θt=0. Different initialization strategies are given in [1].

E-step: The data X are assumed to be incomplete and the
complete data set Y = (X ,Z) is determined by estimat-
ing the set of variables Z = {z1, z2, . . . , zM}, where each

zm is an N -dimensional vector
[
z1
m, z2

m, . . . , zN
m

]T
. The log

likelihood of the complete data Y is

log p (Y|Θ) =
N∑

i=1

M∑

m=1

zi
m log

[
αmp

(
xi|θm

)]
, (1)

where zi
m is the posterior probability

zi
m = P

(
m|xi,Θt

)
=

αt
mp

(
xi|θt

m

)
∑M

l=1 αt
lp (xi|θt

l )
(2)

and Θt is the parameter estimate obtained after t iterations.

M-step: In this step the parameters Θt+1 are determined
according to the estimate of the variables zi

m. For Gaussian
mixture models this corresponds to reestimating the αt+1

m ,
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the µt+1
m , and Σt+1

m for each m according to

αt+1
m =

1
N

N∑

i=1

zi
m, µt+1

m =
∑N

i=1 zi
mxi∑N

i=1 zi
m

, and (3)

Σt+1
m =

∑N
i=1 zi

m

(
xi − µt+1

m

) (
xi − µt+1

m

)T

∑N
i=1 zi

m

. (4)

3. MODEL SELECTION CRITERION: MDL

Different approaches for model selection have been pro-
posed in [1]. The MDL criterion

MDL = − log p (X|Θ) +
M (L + 1)

2
log N (5)

is the most commonly used selection criterion, where L
is the number of parameters defining each component (for
Gaussian mixture models L = d + d (d + 1) /2). Equa-
tion 5 has the intuitive interpretation that the log likelihood
− log p (X|Θ) is the code length of the encoded data. The
term M(L+1)

2 log N models the optimal code length for all
parameters.

4. GENETIC-BASED EM ALGORITHM (GA-EM)

The main goal of interweaving GA [3], [4] with the EM al-
gorithm is to utilize the properties of both algorithms. In our
GA-EM algorithm, each individual in the population rep-
resents a possible solution of the Gaussian mixture model.
The MDL criterion (see Section 3) is used as a fitness func-
tion for model selection. The best individual is the one that
has the lowest MDL value. The evaluation of the individ-
uals in the population is two-fold. Firstly, R cycles of the
EM algorithm are performed on each individual which re-
sults in an update of the set of parameters Θt (at iteration
t) and consequently of the individual which encodes the pa-
rameters. Secondly, the MDL value is determined accord-
ing to Equation 5 from each updated individual to judge
the model. Hence, the evaluation process of the individ-
ual provides both, a fitness value and an update of the pa-
rameters encoded by the individual. To maintain the mono-
tonic convergence property [5], we extended our GA-EM
so that it is elitist which means that the best individual of
the current generation is copied unaltered to the next gen-
eration. Thus, the mixing weights αm of the best individ-
ual have to be saved for the subsequent generation. This
mechanism guarantees that the best member of the popu-
lation at generation t + 1 does not perform worse than the
best individual at generation t. The evolution process of
the GA-EM is terminated when the number of components
used by the best model does not change within five consec-
utive generations. Once the evolution is stopped, the EM

algorithm is used to improve the best individual amin found
so far until the relative log likelihood of the mixture model∣∣∣∣
log p(X|Θt)−log p(X|Θt+1)

log p(X|Θt)

∣∣∣∣ drops below a certain threshold

ε (e.g., ε = 0.00001).
In the following, the GA-EM algorithm is presented.

procedure GA-EM
begin

t ←− 0
OldSize ←− 0
cend ←− 0
Initialize P (t)
while (cend �= 5)

P (t)′ ←− perform R EM steps on (P (t))
MDL′ ←− evaluate

(
P (t)′

)

P (t)′′ ←− recombine
(
P (t)′

)

P (t)′′′ ←− perform R EM steps on
(
P (t)′′

)

MDL′′ ←− evaluate
(
P (t)′′′

)
[
P (t)′′′′ ,MDL

] ←− select[(
P (t)′′′ ,MDL′′) ∪ (

P (t)′ ,MDL′)]

MDLmin ←− min (MDL)
amin ←− arg minMDL

(
P (t)′′′′

)

if (|amin| �= OldSize) then
cend ←− 0
OldSize = |amin|

else
cend ←− cend + 1

end
P (t)′′′′′ ←− enforce mutation

(
P (t)′′′′

)

P (t + 1) ←− mutate
(
P (t)′′′′′

)

t ←− t + 1
end
EM(amin) until convergence of the log likelihood.

end

The best evaluation value achieved during the evolution pro-
cess is stored in MDLmin and the corresponding individual
in amin, where |amin| denotes the number of components
used for this model. P (t) denotes a population of K indi-
viduals at generation t and P (t)′ is the resulting population
after performing R EM steps. P (t)′′ is an offspring popu-
lation of P (t)′ with size H . Performing the EM steps and
evaluation of the offspring population delivers P (t)′′′ and
MDL′′. In the following, the parameters and operators of
the GA-EM are discussed in more detail.

Encoding: Each individual is composed of two parts. The
first part (Part A) uses binary encoding, where the length of
this part is determined by the maximal number of allowed
components Mmax. Each of these bits is related to a par-
ticular component. If a bit is set to zero, then its associated
component is omitted for modeling the mixture, while set-
ting the bit to one includes the component. The second part
(Part B) uses floating point value encoding to encode the
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mean µm and covariance Σm parameters of Mmax compo-
nents. Each component uses L = d + d (d + 1) /2 param-
eters. Due to the switching mechanism of the components
among the individuals during evolution of the GA-EM, the
component weight αm cannot be encoded. Except for the
best individual, these weights are assumed to be uniformly
distributed.

Recombination: The crossover operator selects two parent
individuals randomly from the population P (t)′ and recom-
bines them to form two offsprings. The crossover probabil-
ity pc determines the number of offsprings H (H = pcK).
We use the Single-point crossover [3], [4] which chooses
randomly a crossover position χ ∈ {1, . . . , Mmax} within
part A of the individual and exchanges the value of the genes
to the right of this position between both individuals for part
A with its associated parameters in part B.

Selection: For selection the (K,H)-strategy [6] is used.
This approach refers to both the parent population P (t)′

and the offspring population P (t)′′′ containing K and H
individuals, respectively. After both populations have been
evaluated the K best individuals are selected to form the
population P (t)′′′′ for the next generation.

Enforced Mutation: If more components model the data
points in a similar manner some of their parameters are
forced to mutate. This similarity is measured using the cor-
relation coefficient rjk which is computed pairwise between
the components j and k (1 ≤ j, k ≤ M, j > k) from the
posterior probability zj and zk. If the correlation coeffi-
cient is above the threshold tCorrelation < |rjk|, one of both
components is randomly selected and added to the candidate
set for mutation. Once the candidate set for enforced muta-
tion is complete, a binary value is sampled from an uniform
distribution for each candidate. According to this value, ei-
ther the candidate component is removed by resetting the
corresponding bit in part A of the individual or a randomly
chosen data point is assigned as new mean value.

Mutation: The mutation operator inverts the binary value
of each gene in part A of the individuals with the mutation
probability pm. For part B of the individual an uniform dis-
tributed random number sampled within an upper and lower
bound is assigned to genes that are mutated. These bounds
are determined from the data set. The mutation rate for
value encoding is scaled down by a factor of L, i.e. pm

L .
The mutation for the value encoded part of the individual is
restricted to the mean values. Since our GA-EM is elitist,
there are no mutations performed on the best individual.

5. EXPERIMENTS: EM VERSUS GA-EM

We use two initialization methods in the experiments: (i) A
variant with random starting values: The covariance matrix
is initialized in a similar manner as in [7]. The mean values

of the components µt=0
m are set to randomly selected data

points. The weights αt=0
m of the components are assumed

to be uniformly distributed. (ii) k-means clustering [8]: The
parameters of the selected components are initialized by the
k-means algorithm. All unselected components are initial-
ized to random starting values as described above.
For the GA-EM the start population is comprised of a set of
individuals, where each individual has a different number
of selected components. Hence, the start population P (0)
consists of max {Mmax,K} individuals. The number of in-
dividuals in subsequent populations is restricted to K.
If a component m is not supported by the data, the com-
ponent is annihilated. This is the case when the sum of
the posterior probability zi

m over all data points is below
a threshold expressed as

∑N
i=1 zi

m < tAnnihilate. A rea-
sonable threshold depends on the dimension d of the data.
Data sets with a dimension of d ∈ {2, 5, 10} have been gen-
erated, whereby the sample size N varies with the number
of components M according to N = 300M . The weight
of each component αm is selected randomly, whereby it
is guaranteed that αm > 1

2M ,∀m = 1, . . . , M . The data
were drawn from a mixture of Gaussian distribution with a
different number of components M ∈ {3, 5, 9, 12}. Addi-
tionally, the minimum separation between the components
were determined to be c ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}.
Dasgupta [9] defines that two Gaussians are c-separated if
‖ µ1 − µ2 ‖2≥ c

√
d max (λmax (Σ1) , λmax (Σ2)), where

λmax (Σ) denotes the largest eigenvalue of Σ. A mixture
of components is considered to be c-separated if the com-
ponents are pairwise c-separated. We generated 50 data sets
for each configuration of M , c, and d. The maximum num-
ber of Gaussian components in the data is assumed to be
Mmax = 15 for the EM and the GA-EM algorithm. The
parameter setting for the GA-EM is pm = 0.02 for the mu-
tation probability, pc = 0.8 for the recombination probabil-
ity, K = 6 for the population size, R = 3 for the number of
EM steps within one GA generation, and tCorrelate = 0.95
for the component correlation threshold. The EM algorithm
is executed for 2 to Mmax components. The selected model
is the one that achieves the lowest MDL value within the set
of obtained candidate models. It is assumed that the proper
number of components lies in the given range of [2..Mmax].

In Figure 1 both algorithms are compared with respect
to the achieved average MDL criterion (see column (a)), the
average number of EM steps used to establish the model
(see column (b)), and the percentage of the correctly identi-
fied number of components (see column (c)) which were
used to generate the data set. The x-axis represents the
value of c-separation. The rows of the figure correspond
to the different number of components used for generating
the data. GA-EM1 and EM1 use random starting values and
GA-EM2 and EM2 are initialized using the k-means algo-
rithm. Figure 1 shows the results only for the dimension
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Fig. 1. Comparison of EM and GA-EM: EM1 and GA-EM1 use
random starting values and EM2 and GA-EM2 use the k-means
algorithm for initialization. Column (a): Average achieved MDL,
Column (b): Average number of required EM steps, Column (c):
Percentage of correctly identified number of components.

d = 5. The performance for d = 2 and d = 10 is similar.
Further experiments on simulated and real data are in [10].

Average MDL score (see column (a)): Since both al-
gorithms use the same termination condition, the obtained
MDL score for selecting the finite mixture model is simi-
lar. However, especially for larger number of components
M the GA-EM algorithm yields a better score. This fact
is accredited to the dependency of the EM to the initializa-
tion. The population-based stochastic search behavior of the
GA-EM explores the search space more thoroughly. This
enables to escape from local optimal solutions since the al-
gorithm becomes less sensitive to its initialization.

Average number of required EM steps (see column (b)):
The GA-EM converges faster than the EM algorithm for a
small number of components M . The EM converges faster
by increasing the separation of the components, whereby,
the GA-EM is almost independent to this change. For M =
9 both algorithms require approximately the same number
of EM steps when initialized with random starting values.
Using k-means initialization speeds up the convergence of
the EM algorithm, especially for a large number of com-
ponents in the underlying data. Note that for the GA-EM
algorithm the computational costs required for the genetic
operators such as recombination, mutation and selection are
neglected.

Correctly identified number of components (see column
(c)): The GA-EM is more often identifying the correct num-
ber of components which were used for sampling the data.

For a small number of components M = 3 both algorithms
work well. However, for an increasing number of compo-
nents the GA-EM is able to identify the correct number of
producing components more often.

6. CONCLUSION

This paper proposes a genetic-based EM algorithm for learn-
ing Gaussian mixture models from multivariate data. This
algorithm is capable of selecting the number of components
based on the MDL criterion. Our approach is less sensi-
tive to the initialization compared to the standard EM al-
gorithm. This is attributed to population-based search be-
havior of the GA-EM which explores the parameter space
more thoroughly. Since the GA-EM is elitist it maintains
the monotonic convergence property of the EM algorithm.
The experiments demonstrated that our algorithm outper-
forms the EM algorithm. In fact, we have obtained a better
MDL score while using exactly the same initialization and
termination condition for both algorithms. Additionally, the
number of components which were used to generate the un-
derlying data were more often correctly identified compared
to the EM algorithm. However, one drawback of the GA-
EM algorithm is that it requires additional parameters.
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