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ABSTRACT

A common approach to automatic speech recognition uses two
recognition passes to decode an utterance: the first pass limits the
search to a smaller set of likely hypotheses; and the second pass re-
scores the limited set using more detailed acoustic models which
may target gender or specific channels. A question raised by this
architecture is how to define and train the second pass models.
Here we describe an extensible automatic solution that requires no
manual gender or channel labeling. To train the second pass mod-
els, we cluster the training data into datasets containing utterances
whose acoustics are most similar across the entire utterance. The
clustering is based on which regions of a more general acoustic
model are activated during forced alignments. Experiments with
commercial English-American digit strings show 9.3% relative er-
ror rate reductions over a gender-based two pass system with sim-
ilar numbers of model parameters.

1. INTRODUCTION

A well-known limitation of the Hidden Markov Model (HMM) ap-
proach to speech recognition is its inability to model long-term sta-
tistical dependencies in the speech signal. This causes the model
to over-generate, and introduces potential confusions which affect
accuracy adversely. As an example, while it takes a few seconds
of speech to determine with reasonable accuracy if a speaker is
male or female, most recognizers would not be capable of using
this information to constrain its acoustic search, even though this
information is relevant to the performance of an Automatic Speech
Recognition system [1, 2].

Many approaches have been proposed to address this issue,
mostly in the form of a ”two-pass” decoding process [3, 4]:

1. learn the characteristics of the speaker and channel in the
first decoding pass,

2. use a distinct model adapted to those characteristics to re-
evaluate the recognition

Other approaches have attempted to embed the constraints into
the architecture of the decoder in order to constrain the HMM
search synchronously as more information is learned about the
speaker and the environment [5, 6].

The two-pass approach is conceptually simple and in prac-
tice very powerful. The problem amounts to extracting relevant
speaker and channel information from the utterance, and applying
this knowledge by either adapting the model to those characteris-
tics using well-known adaptation techniques [7, 8], or by picking

a distinct recognizer which has been trained to match those char-
acteristics. This latter ”model selection” approach is particularly
attractive when a lot of training data is available, because it is not
limited by the amount of adaptation data available during decod-
ing. Second pass models can be trained offline using an arbitrary
amount of data which matches the characteristics of a broad range
of speakers and environments.

The main issue related to building such systems has to do with
separating the training data into the different subsets with which
the second pass models are trained. This classification of utter-
ances can be done in a supervised way, based on labels such as
the gender of the speaker. However, these labels are arbitrary, and
do not necessarily correspond well to the objective of improving
recognition.

This classification task can be approached as a clustering prob-
lem over the training data: since the class labels are auxiliary to the
task of coming up with a partition of the data which maximizes
the recognition accuracy, we can ignore them and instead cluster
the data based on a metric which directly relates to this objective.
Assuming that a standard Vector Quantization (VQ) [9] algorithm
can be used to perform this clustering, the question becomes one of
defining an appropriate distance measure which will maximize the
utility of those clusters for the purpose of maximizing recognition
accuracy.

In Section 2, we propose such distance measure for the de-
gree of similarity of the long-term statistics of a set of utterances.
In Section 3, we describe the overall clustering algorithm in de-
tail. Finally in Section 4, we detail the architecture of the resulting
recognition system, explain the experiment setup and give the ex-
perimental results demonstrating the benefits of this approach.

2. DISTANCE MEASURE

The two-pass approach addresses the limitations of the HMM
model by enforcing a distinct HMM recognizer for utterances
which exhibit dissimilar characteristics. We will consider this fea-
ture of the system as our main design objective: to obtain a parti-
tion of the training data into clusters which are maximally dissim-
ilar in terms of the long-term statistics, as perceived by a recog-
nizer. This implies that a good distance measure will have to be
able to evaluate the degree of similarity between an utterance U
and a cluster C using the statistics accessible to a speech recogni-
tion system.

To achieve this, the simplest method is to consider the proba-
bility model p of the recognizer, to adapt it to both the utterance
and the cluster, and to measure the divergence D(pU‖pC) between

I - 6850-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



both adapted models. Because the evaluation of the distance mea-
sure has to be performed on each utterance of the training set re-
peatedly during the iterations of the VQ algorithm, the sufficient
statistics used to compute the divergence have to be compact and
fast to compute. In addition, this distance measure has to be robust
to the lexical variability of the utterance, so that each cluster gets
allocated data with a rich enough phonetic coverage to be robust
to any speech.

In order to satisfy the compactness constraints, the adaptation
is performed exclusively on the mixture weights of the GMM of
the recognizer. The underlying idea is that different Gaussians in
the GMM would be active for utterances with different statistical
characteristics. To illustrate this, one could imagine a gender in-
dependent system to contain Gaussians which are predominantly
“females”, and others predominantly “male”, as was observed in
[6]. By adapting the mixture weights to the current utterance, one
can determine its degree of “female-ness” by comparing its statis-
tics to the typical pattern of Gaussians active in a female context.

In order to satisfy the computational constraints, the adapta-
tion for clustering is performed using a single iteration of the EM
algorithm [10]. Let us assume that u1, ..., uK is a subset of ob-
servations in utterance U that are drawn from distribution p. The
cluster centroid C = c1, ..., cq is the set of all observations drawn
from distribution p from all utterances in a cluster. A GMM model
has probability density p(o) =

PM
j=1 wjGj(o), where Gj is the

jth Gaussian and wj its mixture weight. The KL divergence [11]
between the adapted GMM pU and pC can be written as:

D(pU‖pC) =

Z
o

[

MX
j=1

wU
j Gj(o)] log

PM
l=1 wU

l Gl(o)PM
l=1 wC

l Gl(o)
(1)

Where wU
j can be expressed as (resp. wC

j ):

wU
j =

1

K

KX
k=1

wjGj(uk)PM
l=1 wlGl(uk)

(2)

The formulation of the divergence can be further simplified
by making the assumption, generally valid for Gaussians in high
dimensions, that in the region where a given Gaussian contribution
is dominant, i.e. wherever wjGj(o) >> 0, the log-likelihood of
the GMM is dominated by this most significant term. This implies
that:

wjGj(o) log[

MX
l=1

wlGl(o)] ≈ wjGj(o) log[wjGj(o)] (3)

With that assumption:

D(pU‖pC) ≈
MX

j=1

wU
j

Z
o

Gj(o) log
wU

j Gj(o)

wC
j Gj(o)

(4)

≈
MX

j=1

wU
j log

wU
j

wC
j

= D(W U‖W C) (5)

where W U = wU
1 , ..., wU

M , W C = wC
1 , ..., wC

M are the dis-
crete densities of the Gaussian weights for the models adapted

from utterance U and the cluster centroid C respectively. Using
the KL divergence of the distribution of the posterior probabilities
of the Gaussians corresponds well to the intuitive idea that we are
discriminating between utterances which activate different areas
of the acoustic space. This formulation is also very tractable com-
putationally since the weights wU

j can be accumulated once, and
used to derive the wC

j by averaging them over the whole cluster.
The last issue to address is the lexical independence: in

practice, an acoustic model comprises several GMMs pi(o), i =
1 . . . N . Not all these GMMs will be observed by a given utter-
ance, depending on its phonetic content. A normalized distance
measure can be achieved by adapting each GMM independently,
and only measuring the distance for those Nu GMMs which the
utterance U actually observes. The total distance measure is thus:

DTotal(p
U‖pC) =

1

Nu

X
i

D(pU
i ‖pC

i ) (6)

Since the clusters typically comprise a good fraction of the avail-
able training data, all the GMMs can safely be assumed to be cov-
ered by the data in the cluster. In addition, the recognizer consid-
ered uses a strongly tied acoustic model with only a few hundred
tied GMMs [12], which reduces the sparsity of the adaptation suf-
ficient statistics collected from each utterance.

3. CLUSTERING ALGORITHM

The algorithm used to segment the training data into clusters is
described below in more details.

3.1. Obtaining Observation Statistics

Given a transcribed utterance U = u1, ..., up, the information re-
garding which GMM each observation ui is drawn from can be
obtained based on its transcription through a Viterbi search, which
finds the best phonetic sequence that matches the transcription
while maximizing the likelihood of observations u1, ..., up. The
Gaussian weights of the adapted utterance model then can be com-
puted from Equation 2.

3.2. Cluster Initialization through PCA

To obtain initial clusters, a simple method is to divide training ut-
terances randomly, with the expectation that, through the Lloyd
iterations, the clusters will converge to a good local minimum of
the total divergence. However, a more principled approach can
be used: Equation 5 shows that the distance between two adapted
models can be approximated by the KL divergence between the
discrete distributions of the Gaussian weights. For utterance U,
the adapted model pU has N GMMs and M Gaussian weights
per GMM. By representing it as a M × N dimensional vector
in the Euclidean space, Principal Component Analysis (PCA) [13]
is then applied on a subset of training utterances to separate them
into two clusters along the largest variance direction. Even though
the Euclidean distance is different from KL divergence, the PCA
split of the data produces reasonably good initial clusters.

3.3. The Lloyd Iterations and Tree Structured VQ

Once the initial clusters are obtained, the VQ algorithm alternates
between two steps:
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• The nearest neighbor of every utterance is determined using
Equation 5,

• The centroid of each cluster is then re-estimated by accu-
mulating the statistics of all utterances in the cluster, and
applying Equation 2.

To separate data into R clusters, a Tree Structured VQ [9] ap-
proach is used. The training set is split into two clusters through
PCA and Lloyd iterations, and the algorithm is applied recursively
to the resulting clusters, until the desired number of clusters is
reached. Between each step, new models are trained from the
sub-clusters and the utterance models are re-estimated from the
GMMs in the new models. This provides a finer resolution for
the Gaussian weight distribution, since the newly trained cluster
model covers a smaller region in the acoustic space.

4. EXPERIMENTS

4.1. Recognition System

The resulting recognition system uses one first pass which is
trained from all training data, and R second pass models trained
from scratch from the data lists for each cluster. During decoding,
the first pass recognizer generates a set of hypotheses, a second
pass selector picks which second pass model decodes the utterance
best based on the maximum likelihood match of the acoustics, and
the second pass recognizer uses that model to find the best answer
from the set of hypotheses.

4.2. Experimental Setup

The experiments were run on a speaker-independent American En-
glish digits recognition system trained from 600k digits utterances.
The utterances contain digits and a small number of filler words
such as call, dial, please and thank you. The utterances are of
different gender, channel conditions and noise level. The front
end features are 27 dimensional, including MFCC, ∆ and ∆∆.
The test-set is a collection of 16000 American English digits utter-
ances. The length of the utterances varies from one to ten digits.
The accuracy is evaluated at the sentence level, ignoring all filler
words. The recognition engine used is a context-dependent HMM
system. Each state cluster shares a common set of Gaussians called
Genone [12], while the mixture weights are state-dependent. The
first pass recognizer is the same across all experiments. It is trained
from all 600k utterances, using 500 Genones and 32 Gaussians per
Genone. The first pass recognizer has an error rate of 10.28%.

4.3. Baseline Systems

We considered two baseline systems. The first one is a two pass
system that uses only one second pass model which is a generic
Gender Independent model. This system has slightly lower error
rate compared to a simple one pass system with the same Gender
Independent model because the re-scoring pass is allowed to use
statistics collected over the whole utterance, as opposed to the es-
timates computed in real time in the initial pass. The second base-
line is a two pass system based on supervised male/female split of
the training set. To make the comparison fair, all systems in the ex-
periments have an identical first pass model, and the same number
of Gaussians in the second pass.

4.4. Experimental Results

Table 1. Systems using 32k Gaussians in the 2nd pass

2nd Pass Models # 2nd p.×Genones×Gauss Err. Rate

Gender Ind. 1 × 1000 × 32 9.33%
Gender Ind. 1 × 500 × 64 9.83%
Male/Female 2 × 500 × 32 8.18%
Clustering 2 × 500 × 32 8.08%

Table 1 shows the recognition error rates for systems with 32k
second pass Gaussians. The first two rows show results of the
first baseline system where there is only one second-pass model.
The first system has more Gaussian mixtures in the model, while
the second has more Gaussians per mixture. Both results are pre-
sented to demonstrate that the parameters are efficiently utilized.
The corresponding one pass system (not shown in the table) with
1000 Genones and 32 Gaussians per Genone has an error rate of
10.25%. The third row shows the results of the second baseline
system, with male and female second pass models based on a su-
pervised split of the training data. The fourth row shows the results
of the new system, where two second pass models are trained from
clusters resulting from the automatic segmentation algorithm pro-
posed in this paper. The new system shows a 13.4% relative error
rate reduction against the best result with a single second pass, and
a 1.2% relative error rate reduction against the gender split baseline
system. Inspection of the training data shows that the clusters ob-
tained from the automatic segmentation algorithm are very similar
to those generated by the supervised gender split. This demon-
strates that the unsupervised clustering was able to pick out the
feature which we know to be most relevant to multi-pass recogni-
tion.

Table 2. Systems using 64k Gaussians in the 2nd pass

2nd Pass Models # 2nd p.×Genone×Gauss Err. Rate

Gender Ind. 1 × 2000 × 32 9.14%
Gender Ind. 1 × 500 × 128 9.36%
Male/Female 2 × 1000 × 32 8.22%
Male/Female 2 × 500 × 64 8.69%
Clustering 4 × 500 × 32 7.62%

Table 2 shows the main benefit of the proposed approach,
namely that we can perform more splits of the data and improve the
system further. Row 1-2 show the results of the single second pass
system using 64k Gaussians in the second pass. The correspond-
ing one pass system (not shown in the table) with 2000 Genones
and 32 Gaussians per Genone has an error rate of 10.19%. Row
3-4 show the results of the male/female two pass system. Row 5
shows the new system, with the training set segmented into 4 clus-
ters which provide data sets to train 4 second pass models. The
new system has a 16.6% relative error rate reduction compared to
the best result of the single second pass system and a 7.3% relative
error rate reduction compared to the best result of the male/female
two pass system.

Table 3 shows that the number of clusters can be increased
further and lead to further error rate reduction. Row 1-4 show
the results of the two pass systems using 128k Gaussians in the
second pass. The corresponding one pass system (not shown in
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Table 3. Systems using 128k Gaussians in the 2nd pass

2nd Pass Models # 2nd p.×Genone×Gauss Err. Rate

Gender Ind. 1 × 4000 × 32 9.05%
Gender Ind. 1 × 500 × 256 8.89%
Male/Female 2 × 2000 × 32 7.95%
Male/Female 2 × 500 × 128 8.16%
Clustering 8 × 500 × 32 7.21%

the table) with 4000 Genones and 32 Gaussians per Genone has an
error rate of 10.08%. The new system, with 8 second pass models,
as shown in row 5, achieves a 18.9% relative error rate reduction
compared to the best result of the single second pass system, and
a 9.3% relative error rate reduction compared to the best result of
the male/female two pass system.

These results show that using a large number of second pass
models can lead to better accuracy with little overhead cost. In
terms of decoding speed, there is little difference between the
speed of a system with 8 second passes and a system with a single
second pass, provided that the cost of second pass selection is neg-
ligible. The memory footprint of the system grows with the num-
ber of second passes, although sharing of the parameters across
passes [14] can significantly reduce the size and complexity of the
system while maintaining accuracy.

5. CONCLUSION

We have introduced a new approach for designing two pass speech
recognition system to address the well know limitation of the
GMM/HMM model – its inability to model long range dependen-
cies in the statistics of the speech. We proposed an algorithm to
segment training utterances into clusters based on their similarities
in the acoustic space, so that more focused second pass models
can be trained. The segmentation process is fully automatic and
requires no manual labeling of gender or channel. We showed that
this approach improved significantly upon single pass systems as
well as state of the art two pass systems which were built based
on a supervised gender split. We also showed that increasing the
number of clusters improved the system even further, while having
a negligible effect on the complexity of the overall system.
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