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ABSTRACT

In this paper, we present cluster-dependent acoustic modeling
for large-vocabulary speech recognition. With large amount of
acoustic training data, we build multiple cluster-dependent models
(CDM), each focusing on a group of speakers in order to represent
speaker-dependent characteristics. It is motivated by the fact that
a sufficiently trained speaker-dependent (SD) model is better than
the speaker-independent (SI) model. During decoding, we decode
the data of each test speaker using CDMs selected under certain
criteria to achieve high recognition accuracy. Various speaker clus-
tering and model selection techniques are proposed and compared
in the task of Broadcast News (BN) transcription. The CDM pro-
vided more than 1% absolute gain in unadapted decoding and 0.5%
gain in adapted decoding when compared to our baseline system
on the EARS BN 2003 development test set.

1. INTRODUCTION

Recently, large amount of acoustic training data have become
available for large-vocabulary speech recognition. How to effec-
tively utilize these data is important. A simple way is to train a
large model with increased number of parameters [1]. But large
model may eventually be saturated at certain point and will also
slow down the recognition, which is a critical problem for real-
time applications.

Instead of training a large model, we have been experimenting with
multiple cluster-dependent models (CDM), with each of them fo-
cusing on a group of speakers. Our goal is to approach the perfor-
mance of speaker-dependent (SD) model because we know that,
when having sufficient training data, the SD model is better than
the speaker-independent (SI) model. Since building an SD model
for each test speaker for the BN transcription task is not realistic,
CDM can be regarded as a feasible compromise between the SD
and SI models.

During decoding, we select one or several CDMs for each test
speaker under certain criteria, e. g. using speaker identification
(speaker ID) technique. As presented later, different techniques
for speaker clustering and model selection are compared. Overall,
the CDM resulted in more than 1% absolute gain in unadapted de-
coding and 0.5% gain in adapted decoding when compared to our
baseline on the EARS BN 2003 development test set.

The paper is organized as follows. In Section 2, we describe
the training procedure of CDM, including speaker clustering and
model adaptation. The model selection strategy and model merg-
ing are presented in Section 3. We then report experimental results
in Section 4 and conclude in Section 5.

2. CDM TRAINING

The high-level procedure of the CDM training is depicted in Figure
1. We first clustered the training data into several speaker clusters.
Then for each cluster, a CDM was trained on the data from that
cluster.

Figure 1: High-level structure of CDM training

2.1. Speaker Clustering

In this work, two different speaker clustering techniques are com-
pared. The first is the online speaker clustering approach devel-
oped recently at BBN [2]. For each incoming speaker turn, a deci-
sion was made based on the single Gaussian covariance likelihood
ratio between the new speaker turn and the current clusters. The
new data was either merged with one of those clusters or used to
create a new cluster. Since there is no need to look back, this tech-
nique is computationally efficient.

We also explored another clustering approach using one Gaussian
per state (1gps) State Clustered Tied Mixture (SCTM) model [3].
As shown in Figure 2, first we randomly selected N initial train-
ing speakers and adapted the general 1gps model through Max-
imum a posteriori (MAP) adaptation [4] into N cluster-specific
1gps SCTMs. Each 1gps model has around 1000 codebooks, with
one Gaussian per codebook. Then we scored all the speaker turns
in the training data with the 1gps SCTMs. Based on the likelihood
given by the 1gps models, we divided the training set into N clus-
ters. Then we ran several iterations of MAP and scoring to get the
final clusters and also the 1gps SCTMs that were to be used by the
speaker ID (or model selection) during recognition.

2.2. Model Adaptation

Instead of training the CDMs from scratch, we chose to adapt the
general SI or Speaker-adaptive training (SAT) model [5]. The rea-
son for doing that is because the data from each cluster on average
is just a small subset of the original training data. We may not be
able to train a good model with such small amount of data. On
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Figure 2: Diagram of 1gps-based speaker clustering

the contrary, we can take advantage of the well-trained general
model and adapt it into a cluster-specific model by only changing
the Gaussian parameters while keeping the same model structure.

As shown in Figure 3, the general model was first adapted with the
Maximum Likelihood Linear Regression (MLLR) adaptation [7]
and transformed into the i-th MLLR model for Cluster i. Then the
MLLR model was adapted into the final CDM via MAP adaptation
[4]. Both stages of adaptation can be iterative with the models up-
dated in each iteration. In this work, both the means and variances
for each Gaussian mixture were adapted. The mixture weights
were all taken from the general model.

Figure 3: Diagram of adapting general model into CDM

Two sets of CDMs were trained with similar training procedures
and used for unadapted decoding and adapted decoding, sepa-
rately. During the training of the CDM to be used in unadapted de-
coding, the general SI model was adapted and the training data was
transformed with a global Heteroscedastic Discriminant Analysis
(HDA) transform [8] – the same transform used for training the SI
model. While for adapted decoding, the general SAT model acted
as the seed model. We transformed the cluster-specific data with
the speaker-dependent HDA and Constrained Maximum Likeli-
hood Linear Regression (CMLLR) transforms [6], which were
used in the training of the general SAT model. With the trans-
formed cluster-specific data, the general SAT model was adapted
to the MLLR models and then the CDMs.

3. CDM SELECTION AND MERGING

3.1. Model Selection

During decoding, we first determine the most likely CDM for each
test utterance or test speaker. Then we use the selected CDM to

decode those data. We can see that the step of model selection is
critical for the final recognition performance. The more accurate
the model selection is, the better recognition performance we can
achieve.

Three approaches were compared in this work. Two of them cor-
respond to the speaker clustering techniques presented above, the
online speaker clustering and the 1gps-based speaker clustering.
The third approach is the Gaussian Mixture Model (GMM) based
speaker ID [9].

Single-Gaussian-Based Selection In the single-Gaussian-based
model selection, we found the most likely cluster among the train-
ing clusters using a technique similar to the online speaker clus-
tering. The decision was based on the single Gaussian covariance
likelihood ratio between the Gaussian estimated on the test speaker
data and those Gaussians corresponding to current clusters.

1gps-Based Selection We also tried a different model selection
in adapted decoding, which is corresponding to the 1gps speaker
clustering. First we estimated the speaker-dependent feature trans-
forms based on the 1-best hypotheses from the unadapted decod-
ing. Then we scored each test speaker with the 1gps SCTMs and
selected the model that gave the highest likelihood for the test data.
The corresponding CDM was adapted to the 1-best hypotheses
with the MLLR adaptation and used to decode the data from the
specific test speaker.

GMM-Based Selection The third approach we compared with is
the GMM-based speaker ID. We trained a 1024-component back-
ground GMM using a 10-hour data subset randomly chosen from
the training data set. Then we adapted the background GMM
into multiple speaker GMMs corresponding to each CDM. Dur-
ing recognition, for each frame of the test utterance, the top five
mixture components of the background GMM were identified first.
We then evaluated the likelihood of each of the speaker GMMs
by using only five corresponding mixture components. The CDM
selected for an utterance is the one such that its corresponding
speaker GMM produced the highest likelihood.

3.2. Model Merging

Besides using the top 1 CDM identified via speaker ID for de-
coding, we also tried merging the several top CDMs to enhance
the robustness. The corresponding Gaussians in these CDMs were
merged together with certain weights to build a new model for
each test speaker. The reason we can do that is because all the
CDMs were originally derived from the same seed model. The
merged model was further adapted to the test data using MLLR
before being used for decoding. There are various ways of setting
the merging weights. They can either be uniform weights or be
estimated based on the likelihood from speaker ID.

Two types of unequal weights were proposed in this work. The
first was based on the log likelhood ratio between the top models,
as

wi =
logpi − logpm+1∑m

j=1(logpj − logpm+1)
, (1)

where pi is the likelihood from the i-th most likely model and m
is the number of models to merge. The log likelihood from the
(m + 1)-th most likely model serves as a bottom line here.
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Another weighting was based on the a posteriori probability,

ŵi =
pi∑m

j=1 pj
. (2)

4. EXPERIMENTAL RESULTS

4.1. Corpus and Recognizer

The acoustic training corpus used in this work is the 843-hour BN
data set. It includes the 141-hour Hub-4 acoustic training data and
702 hours of automatically selected TDT data [1]. All of the speak-
ers in this data set were clustered into 80 clusters to be used in the
training of 80 CDMs. The number of clusters was determined such
that the average amount of training data for each cluster is around
10 hours, which we think is appropriate for the large aoustic model
used in this work (around 700k Gaussians). The test material is
the EARS BN 2003 development test set. It consists of 3 hours of
speech from 6 broadcasting sources. We also validated our results
on another 3-hour test set, the EARS BN 2004 development set.

In our Byblos BN transcription system, the decoding process con-
tains two stages, the unadapted decoding and adapted decoding.
First, the SI model (or CDM derived from SI model) generated hy-
potheses for unsupervised adaptation. Then, the decoding was re-
peated but with the SAT model (or CDM derived from SAT model)
that has been adapted to the hypotheses generated in the first stage.

The original 60-dimensional feature vector consists of 14 PLP
cepstral coefficients [10], energy and their first, second and third
derivatives. It is furthered transformed into a 46-dimensional fea-
ture vector with a global HDA transform or speaker-dependent
HDA and CMLLR transform. The frame rate is 10 ms.

4.2. Unadapted Decoding

The word error rates (WER) of the unadapted decoding stage are
listed in Table 1. As we can see, the WER was reduced for all
shows. The absolute reduction on each show ranges from 0.2%
to 3.1%. Overall, we obtained 1.2% reduction (12.6% vs. 13.8%)
compared to the baseline using the SI model.

Model ABC CNN MSN NBC PRI VOA All

SI 12.6 19.9 10.5 10.5 9.6 19.8 13.8
CDM 12.1 18.0 9.4 10.1 9.4 16.7 12.6

Table 1: Unadapted decoding results for the SI baseline and the
CDM

We also investigated the effects of model adaptation during the
training of the CDM. As shown in Table 2, when using only MAP
adaptation, the overall WER decreased to 13.2%, or 0.6% abso-
lute compared to the baseline 13.8% in Table 1. When using
only MLLR adaptation, the overall WER decreased from 13.8%
to 12.8%, or 1.0% absolute. Adding one iteration of MAP adap-
tation after two iterations of MLLR adaptation provided another
0.2% gain.

The single-Gaussian (SG) speaker clustering is also compared with
the GMM-based speaker ID in Table 2. There is no difference
between these two in terms of the final WER.

MLLR iter MAP iter Speaker ID WER

0 1 SG 13.2
2 0 SG 12.8
2 1 SG 12.6
2 1 GMM 12.7

Table 2: Comparison of various transforms and speaker ID (SG:
Single-Gaussian-based speaker ID)

In order to understand the effect of the CDMs, we carried out a
cheating experiment in which each test utterance was decoded 80
times using 80 different CDMs. As expected, the overall WER
for the entire test set when using one of the 80 CDMs was higher
than that of the SI baseline model. The WERs ranged from 14.9%
to 20.7% as shown in Table 3. However, if we selected only the
hypothesis with the lowest error rate among the 80 hypotheses for
each test utterance, the WER for the entire test set would be 8.7%.
In other words, this is the WER we would have achieved if we
could select the right CDM for every utterance. This Oracle WER
implies that there is plenty of room to improve our model selec-
tion procedure. Similarly, the result of the cheating selection at
the speaker level is listed in Table 3. It is higher than the Oracle
WER selected at the utterance level. This is an indication that the
automatically grouping of utterances into a speaker is not optimal.

System WER

SI 13.8
Single CDM 14.9 - 20.7

Speaker ID + CDM 12.6
Oracle (speaker-level) 11.5
Oracle (utterance-level) 8.7

Table 3: Real error rates compared to oracle error rates

4.3. Adapted Decoding

The recognition WERs in the adapted decoding stage, when using
the SAT-CDMs trained under different setups, are shown in Table
4. The first row displays the baseline WER when using the stan-
dard SAT model. In the remaining four experiments using the SAT-
CDMs, we tried adapting only the means or both the means and
the variances of the mixture densities. Adapting both the means
and variances helped a little bit. For model selection, we tried
all of the three approaches, the SG-based, GMM-based or 1gps-
based speaker ID. They resulted in the same performance. The
lowest WER that the SAT-CDMs achieved was 10.8%, or 0.2%
absolute reduction in comparison to the baseline result. This is
much smaller than what we obtained in the unadapted decoding
stage.

To understand why we got smaller gain in adapted decoding,
we calculated the Kullback-Leibler (K-L) divergence between the
Gaussians of multiple 1gps SCTMs. As shown in Table 5, the
K-L divergence was reduced by almost a factor of three after ap-
plying the speaker-dependent transforms. So the CDMs trained
in the speaker-dependent-transformed feature space are closer to
each other than those trained in the global-HDA-transformed fea-
ture space. This could be part of the reasons for the small gain
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Model Adapted Speaker ID WER

SAT N/A N/A 11.0
CDM Mean SG 10.9
CDM Mean,Var SG 10.8
CDM Mean,Var GMM 10.8
CDM Mean,Var 1gps 10.8

Table 4: Adapted decoding results

from the CDM in adapted decoding.

Transform K-L Divergence

Global HDA 12.9
Speaker-dependent transform 4.7

Table 5: K-L divergence after different feature transforms

4.4. Model Merging

In order to achieve further improvement, we tried model merging.
The top 3 or 5 CDMs selected by the speaker ID were merged into
a new model. As shown in Table 6, with equal weights, the merg-
ing of the top 3 CDMs gave 0.3% gain compared to the baseline.
Another 0.1% gain was obtained from merging the top 5 CDMs.
No further gain was observed when merging the top 8 CDMs. With
weights wi, determined by the log likelihood ratio between the top
five models and the the sixth model, we achieved 0.5% absolute
gain compared to the baseline. The weights ŵi which were based
on the a posteriori probability didn’t outperform the weights wi.

Model No. of Models Weights WER

SAT 1 1 11.0
CDM 3 1/3 10.7
CDM 5 1/5 10.6
CDM 8 1/8 10.7
CDM 5 wi 10.5
CDM 5 ŵi 10.7

Table 6: Results of model merging

4.5. Validation on Another Test Set

To validate the results we obtained from the CDM, we also tested
on another test set, the EARS BN 2004 development set. As shown
in Table 7, CDM provided 1.3% absolute gain in unadapted de-
coding and 0.6% gain in adapted decoding, similar with what we
obtained on the previous test set.

5. CONCLUSION

As reported in this paper, CDMs gave more than 1% absolute gain
in unadapted decoding and 0.6% gain in adapted decoding on the
EARS BN development test sets. We also noticed that the gap
in performance between unadapted and adapted decoding was re-
duced. Different speaker clustering and speaker ID techniques did
not bring much difference in terms of the final WER. Model merg-
ing and system combination provided further gains.

System Unadapted decoding Adapted decoding

Baseline 16.0 12.9
CDM 14.7 12.3

Table 7: Results on EARS BN 2004 development test set

All the general models used in this work were trained under max-
imum likelihood (ML) criterion. Currently we are working on the
Maximum Mutual Information (MMI) based CDMs by adapting
the general MMI model into multiple MMI-CDMs via MMI-MAP
[11]. We also saw that the WER is still high when compared to the
Oracle WER. This indicated a large room for improving the model
selection, which is part of our future work. We will also apply the
CDMs to other speech recognition task, such as recognition of the
conversational telephone speech.
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