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ABSTRACT 
In this paper, we present a Hierarchical Correlation 

Compensation (HCC) scheme to reliably estimate full 

covariance matrices for Gaussian components in CDHMMs for 

speech recognition. First, we build a hierarchical tree in the 

covariance space, where each leaf node represents a Gaussian 

component in the CDHMM set. For all lower-level nodes in the 

tree, we estimate a diagonal covariance matrix as usual. But we 

estimate full matrices for all upper-level nodes since they have 

large amount of data. For each Gaussian in a leaf node (with 

diagonal components estimated already), we compensate its off-

diagonal components by using a linear combination of a set of 

prototype covariance matrices, which includes the estimated 

covariance matrices of all nodes in the tree along the upward 

path from the leaf all the way to the root.  At last, the linear 

combination weights are estimated based on the maximum 

likelihood (ML) criterion. We have evaluated the HCC on the 

DARPA Resource Management (RM) task and an in-house 

large-vocabulary Chinese dictation task. We have achieved 

significant error reduction over the best diagonal covariance 

models. Experimental results also show that HCC yields better 

performance than other full covariance modeling schemes.  

1. INTRODUCTION 
Full covariance explicitly models the correlation among 

feature components.  But it is very difficult to obtain reliable 

estimation of a full covariance matrix due to a large number of 

free parameters to be estimated in practice. In speech recognition 

based on CDHMMs, we usually adopt diagonal covariance 

matrices for all Gaussian components in the models. Diagonal 

covariance matrix implies strong assumption that the feature 

components are independent. Even mixtures of diagonal 

covariance can model the correlation to some extent; the model 

precision is still limited. In speech recognition, many different 

approaches have been proposed to de-correlate feature 

dimensions for this purpose in either feature or model space. In 

feature space, it is well known that Discrete Cosine Transform 

(DCT) [2] and Linear Discriminant Analysis (LDA) [3] are used 

in the front-end processing. In model space, Maximum 

Likelihood Linear Transform (MLLT) [4] and Heteroscedastic 

Linear Discriminant Analysis (HLDA) [5] use a global 

projection matrix optimized by the maximum likelihood 

criterion. Besides, semi-tied Covariance (STC) [6] and Multiple 

HLDA (MHLDA) [7] also address the same issue by building 

multiple subspace projections.  

   Recently, people have proposed several approaches to directly 

estimate full precision matrices in CDHMMs based on a linear 

combination of a set of global prototype full precision matrices, 

such as mixture of covariance (MIC)[8], SPAM[9], modeling 

covariance by basic expansion [10]. Experimental results show 

that all these full precision modeling approaches outperform the 

diagonal models.   

In this paper, we present a Hierarchical Correlation 

Compensation (HCC) method to reliably estimate the full 

covariance matrices in CDHMMs based on a tree-based 

prototyping scheme.  First of all, we build a hierarchical tree in 

the covariance space, where each leaf node represents a 

Gaussian component in the CDHMM set. For all lower-level 

nodes in the tree, we estimate a diagonal covariance matrix as 

usual. But we estimate full matrices for all upper-level nodes 

since they have large amount of data. For each Gaussian in a leaf 

node (with diagonal components estimated already), we 

compensate its off-diagonal components by using linear 

combination of a set of prototype off-diagonal covariance 

matrices, which includes the estimated covariance matrices of all 

nodes along the upward path from the leaf all the way to the root 

in the tree.  At last, the linear combination weights are estimated 

based on the maximum likelihood (ML) criterion.   We have 

evaluated the above HCC algorithm on the RM database and an 

in-house large vocabulary Chinese dictation task, experimental 

results shows that our HCC algorithm yields better performance 

than all other existing full covariance modeling methods, such as 

STC, HLDA, and MIC. 

The remainder of this paper is organized as follows. In section 

2, we give the outline of our algorithms, followed by hierarchal 

tree build in section 3. The hierarchal correlation compensation 

scheme is described in section 4. The experiments are reported 

in section 5 and 6. Finally, we conclude the paper with our 

findings in section 7.  

2. THE HCC ALGORITHM OUTLINE  
   Our hierarchical covariance compensation (HCC) scheme 

consists of the following five steps: 

1. Train a baseline model set of tri-phone CDHMMs with 

diagonal covariance matrices. The mean and the covariance 

are estimated as usual based on the ML criterion. We will 

keep the structure, mixture weights, and the mean vectors 

of the baseline model set unchanged in following stages.  

2. All the tied-states are used to build a tree. The tree can be 

built according to the full covariance’s K-L distance with 
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the top-down clustering. Or we can use the decision tree 

generated from the previous baseline model training stage. 

We use tied-states as base elements in tree-building since 

the full covariance matrices of Gaussian components may 

not be reliable for the clustering. After the tied-state tree is 

built, for each tied-state node we expand all its Gaussian 

components as another layer of its child.  

3. Estimate a covariance matrix for each node in the tree. For 

all leaf nodes, we estimate diagonal covariance matrices. 

For each upper-level node, a full covariance matrix is 

estimated from all of its child nodes.  

4. For each Gaussian component in a leaf node, the estimated 

full covariance matrices of all the nodes along the upward 

path from the leaf node to the root are used to estimate the 

off-diagonal components in its full covariance matrix based 

on a linear combination scheme, where the combination 

weights are estimated by the maximum likelihood criterion. 

5. Replace the diagonal covariance matrices in the model set 

trained in step 1 with the newly estimated full covariance 

matrices.  The resultant model set is used for recognition. 

3. HIERARCHICAL TREE BUILDING 
   To build a tree, we use the tied-states in the baseline model as 

basic elements. There are two ways to build the tree. The first 

one is to use the covariance matrices’ K-L distance measure to 

do the top-down matrix clustering. The second one is to derive 

from the decision trees generated in the baseline model training 

stage.

3.1 Top-down covariance matrix clustering  

   In the training process, we use maximum likelihood to 

estimate the mean vectors and full covariance matrices of each 

Gaussian component. The mean of the m ’th Gaussian 

component mµ is 
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,where )(το  is the τ ’th observation vector; )(τγ m  is the 

probability that )(το  belongs to the m ’th Gaussian component. 

   We define the m ’th component’s weight mω as 
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   The full covariance matrix of the i th tied-state node i is 

estimated from all of its child nodes as: 
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Figure 1. The tree generated from the top-down covariance 

matrix clustering 

 The weight of i th tied-state node is 

−∈
− =

}ith{

,

statetiedcomponents

mistatetied ωω               (5) 

   We then use all the tied-state nodes to do the top-down 

clustering as in [11]. In clustering, we need to define how to 

calculate distance measure between each pair and how to 

compute a center for each new cluster.  

   The distance measure between two Gaussian densities 

( )1;;)( −= mmm xNxg µ  and ( )1;;)( −= nnn xNxg µ
is defined as the sum of the Kullback-Leibler (KL) divergence 

from )(xgm  to )(xgn  and from )(xgn  to )(xgm . That is 
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   Since only the covariance is of interest, the distance between 

the Gaussian means is ignored. Eventually, we use the following 

formula to calculate the distance between two covariance 

matrices: 

( )mnnmTrnmd += −− 11),(                (7) 

    Next, for each intermediate node k  in the tree, a full 

covariance matrix is calculated from all tied-states belonging to 

the node k as:                                                    
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,where )(kG  is the set of all the elements belonging to node 

k . istatetied ,−ω and istatetied ,− are the weight and the full 

covariance matrix of tied-state. 

Based on the distance measure in Eq. (7) and new center 

calculation in Eq.(8),  we use the standard top-down clustering 

approach to build the tree and expand each tied-state in leaf node 

with all its Gaussian components as shown in Figure 1. 
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3.2 Phonetic decision tree based tree building

    Different from the previous top-down clustering tree, the data 

is initially divided into monophone clusters. Then each 

monophone’s node is expanded with its phonetic decision trees 

generated in baseline model training for this monophone. The 

leaf nodes up to this point are all tied-states. Then each leaf node 

is expanded with all its Gaussian components as another layer of 

child nodes. The resultant decision tree is shown in Figure 2.  

The full covariance matrix of each intermediate node is 

estimated based on Eq. (8). 

Decision Tree

…

… … … …
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(root)
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(monophone)
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(Tied-state state)

…

… … … … … …

Leaf nodes

(Gaussian Component)
N mixture components

root

node

node

node

m

Figure 2. Tree structure generated from phonetic decision trees 

4. HIERARCHICAL CORRELATION COMPENSATION 

In the baseline model set, all diagonal components in 

covariance matrices are estimated reliably. Only off-diagonal 

components are needed to be compensated. For each Gaussian 

component, all the nodes along the upward path to the root are 

used to estimate the off-diagonal components for this Gaussian 

component based on a linear combination strategy. The linear 

combination weights are estimated by the maximum likelihood 

criterion. 

4.1 Linear combination 

   Assume a Gaussian component in the i th leaf node, all 

intermediate nodes along the upward path from this node to the 

root is defined as the set:  
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   Thus the new full covariance i
ˆ of the i th Gaussian 

components is estimated by 
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, where ( )idiag  is the diagonal matrix of i , and mi ,λ
are all  combination weights  to be estimated.  

4.2 Weight estimation 

The linear combination weights mi ,λ  are estimated to maximize 

the likelihood function of data belonging to this Gaussian 

component. The EM algorithm is used here. The auxiliary 

function in the EM algorithm can be written as 
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, where iω  is the component’s weight defined in Eq. (3). i is 

the i th component’s full covariance estimated as in Eq.(2). i
ˆ

is the new full covariance matrix to be estimated as in Eq.(10), 

where only the weights mi,λ are unknown.  M is the total 

number of Gaussian components in the model set. 

   For each Gaussian component i , the weights 
)(iλ  are 

independent from other Gaussian components. Hence the 

optimization problem of the whole model can be decomposed 

into M small optimization problems. That is, for Mi ...,2,1= ,

optimizing

( )iiii TrQ −=Λ −− 11 ˆˆlog)(              (12) 

We use a numerical method to maximize the Q function w.r.t. 

weights mi ,λ    in the Matlab® optimization toolbox.   

5. EXPERIMENTS (I): THE RM TASK 

    In this section, the above HCC method is evaluated in the 

DARPA RM task. A total of 3990 sentences are used for training 

and the baseline model is trained by using HTK which starts 

from a single Gaussian monophone system. After four iterations 

of embedded training, the monophone models are cloned to 

produce a single Gaussian triphone system. In-word triphone 

models are used in our experiments. These initial triphone 

CDHMMs are trained with two iteration of embedded training 

after the decision-tree tying. The baseline system in step 1 is 

produced by standard iterative mixture splitting using four 

embedded training per mixture increasing. At last, 6 Gaussian 

mixture components with diagonal covariance matrices are 

trained as the baseline model for each tied-state.  A total of 1199 

sentences are used as the test data. The decoding is based on 

HTK which uses a word-pair grammar.  The word error rate 

(WER) of the baseline system is 4.09%. 

5.1 Compared with other related techniques 

    First of all, we compare the HCC with other existing related 

techniques, such as HLDA[5], STC[6], and MIC[8]. The result is 

shown in table 1. From the table, we can see that all the 

techniques can achieve better performance than the baseline 

model set with diagonal covariance matrices. Among all these 

techniques, the HCC gives the best performance and the relative 

WER reduction is up to 22.7%. The reason is that after we 

successfully overcome the reliable estimation problem, full 

covariance explicitly models the correlations between features 

components and thus improves speech models classification 

accuracy. 

We can also see that there is no significant performance 

difference between top-down clustering and decision tree, and 

decision tree is slightly better. The possible reason is that top-

down clustering is a data-driven tree, while decision tree also 

utilizes phonetic information and can achieve better performance. 
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Table 1. Performance comparison of various approaches on RM  

 WER WER reduction  

Baseline 4.09% 0% 

HLDA 3.74% 8.56% 

STC (1 transformation) 3.53% 13.7% 

STC (143 transformations) 3.33% 18.6% 

MIC (39 prototypes) 3.49% 14.7% 

HCC (top-down clustering) 3.22% 21.3% 

HCC (decision tree) 3.16% 22. 7%

5.2 Compared with diagonal model with more mixtures 

Fig 3. Performance comparison of HCC with diagonal models 

with increasing number of mixtures 

    In Figure 3, we first show the recognition performance (in 

WER) of several diagonal model sets as a function of their 

mixture numbers in each tied-state. We increase the mixture 

number from 6 in the baseline model set up to 12. When the 

number of mixture components reaches 8 (the error rate is 

4.00%), the word error rate reduction compared with the 

baseline is only 1.96%. This shows that it can not significantly 

improve the performance over our baseline model by simply 

increasing the number of diagonal Gaussian mixtures. We also 

plot the HCC’s performance in the figure as an isolated diamond 

point.  From the results, it is clear that the HCC yields much 

better performance than the diagonal model set with even larger 

number of mixtures.

6. EXPERIMENTS (II): CHINESE DICTATION TASK 

In this section, the above HCC method is evaluated in a larger 

database, i.e., an in-house Chinese dictation task. The baseline 

system is the MSRA Mandarin Speech Toolbox [12]. We added 

more training data to the toolbox. A total of 49378 sentences 

from 250 speakers (totally 75 hours) are used for training. The 

baseline model set is a CDHMM set with 16 mixtures of 

Gaussian components with diagonal covariance matrices for 

each tied state.  A total of 500 sentences from 25 speakers are 

used for word-loop decoding in the level of Chinese characters. 

The tied-state number is 5114. The error rate of Chinese 

character of the baseline system is 21.14%, while that of HCC 

with decision tree is 18.07%. We got 14.52% error rate 

reduction.

Table 2. Performance comparison on Chinese database 

  Error Rate Error Rate 

Reduction

Baseline 21.14% 0%  

HLDA 20.11% 4.87% 

STC  19.69% 6.86% 

HCC (decision tree) 18.07% 14.52% 

7 CONCLUSIONS 

In this paper, we proposed a new Hierarchical Correlation 

Compensation (HCC) algorithm to reliably estimate the full 

covariance for CDHMMs in speech recognition. We evaluate the 

HCC on the standard RM and a large in-house Chinese dictation 

tasks. A significant error reduction over the standard model with 

diagonal covariance matrices has been observed. Furthermore, 

experimental results also show that the HCC yields better 

performance than all other existing full covariance modeling 

methods. 
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