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ABSTRACT 

We propose an algorithm for optimal clustering and non-
uniform allocation of Gaussian Kernels in scalar (feature) 
dimension to compress complex, Gaussian mixture-based, 
continuous density HMMs into computationally efficient, small 
footprint models. The symmetric Kullback-Leibler divergence 
(KLD) is used as the universal distortion measure and it is 
minimized in both kernel clustering and allocation procedures. 
The algorithm was tested on the Resource Management (RM) 
database. The original context-dependent HMMs can be 
compressed to any resolution, measured by the total number of 
clustered scalar kernel components. Good trade-offs between 
the recognition performance and model complexities have been 
obtained; HMM can be compressed to 15-20% of the original 
model size, which needs 1-5% of multiplication/division 
operations, and results in almost negligible recognition 
performance degradation. 

1. INTRODUCTION 

Current state-of-the-art, context-dependent, continuous density 
HMM-based, large vocabulary speech recognition system can 
deliver a fairly decent recognition performance but usually at a 
price of large memory for its storage and high computation 
complexities in computing local log-likelihoods and dynamic 
programming search. It poses a research challenge to come up 
with HMMs of smaller footprints while maintaining the high 
performance of a much larger model. The problem can be 
approached from two forefronts: (1) training parsimonious 
models of high discrimination, e.g., minimum classification 
error (MCE) [1] or variational Bayesian (VB) [2] training; (2) 
compressing a given high resolution (hence high performance) 
model into a smaller one, hopefully without compromising the 
recognition performance. In this study we concentrate on the 2nd

approach to continuous, Gaussian mixture-based HMM model 
compression. Similar attempts have been taken along the idea 
of HMM model compression before, e.g., feature-level 
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parameter tying [3], subspace distribution clustering [4], or 
divergence based vector quantized variances [5]. However, 
there are some missing or incomplete parts in the previous 
attempts on how to find the optimal centroid of clustered 
kernels for a chosen information-theoretic distortion measure 
and how to allocate kernels efficiently across different feature 
subspaces or dimensions. 

The symmetric Kullback-Leibler divergence [6], an 
information-theoretic measure of inter-distribution distortion, is 
chosen in this study for measuring (dis)similarity between two 
given Gaussian probability density functions (pdf’s). It has been 
shown that the optimal centroid of a Gaussian pdf cluster can be 
computed through a fast iterative procedure [7]. 

In the feature-level parameter tying or the subspace HMM 
clustering, same number of kernels was used across each 
dimension or subspace. But it is fairly well known that features 
in different dimensions or subspaces can have unequal 
discriminations, e.g., [8]. Enlightened by the rate-distortion 
theory which has been well exploited for assigning bits non-
uniformly to different LPC parameters to minimize distortion at 
a given bit rate, e.g., [9], we propose an non-uniform kernel 
allocation algorithm. The same symmetric KLD is used to 
measure the model precision and kernels are allocated 
successively to a feature dimension where maximum KLD 
reduction is obtained. Via this non-uniform kernel allocation 
algorithm, we can compress the original HMM into any size 
(measured by the total number of Gaussian kernels used) while 
the total KLD between the original and the compressed HMMs 
is minimized. 

The rest of the paper is organized as follows. In Section 2, 
an overview of the symmetric KLD and the corresponding 
optimal centroid of clustered multivariate, Gaussian pdf’s,
especially for the diagonal covariance case, are given. In Section 
3, an algorithm for non-uniform kernel allocation is proposed. 
Database, experimental setups and results are presented in 
Section 4. In Section 5, a conclusion is given. 

2. KULLBACK-LEIBLER DIVERGENCE AND 
CORRESPONDING OPTIMAL CENTROID 

The symmetric Kullback-Leibler divergence or the Jeffrey’s 
divergence [6], a distortion measure for measuring 
(dis)similarity between two given pdf’s, f and g, is defined as: 
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This measure is a symmetrized version of two asymmetric KLD, 
or the first and second terms in equation (1). The optimal 
centroid probability distribution, fc, of a cluster of N
distributions is obtained by minimizing the total KLD, between 
the cluster centroid pdf and all pdf’s in the cluster, as: 
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For multivariate Gaussian distributions, a closed form of the 
symmetric KLD in equation (1) is: 
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where µ  and R are the mean and covariance of the 
corresponding Gaussian distribution, respectively. 

The optimal centroid of multivariate Gaussians can be 
obtained by solving a set of Riccati matrix equations [7]. For 
the special case of diagonal covariance, the i-th dimension mean 
and variance of the centroid, µci and 2

ciσ , can be computed 

iteratively by alternating eqs. (4) and (5) as: 
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It has been shown that the overall KLD is a convex function 
of both mean and covariance of the centroid Gaussian pdf.
Experimentally, we have also found that only few iterations are 
needed for a centroid to converge to its optimum [7]. 

Fig. 1 depicts the 7,070 Gaussian kernels of a context-
dependent HMM (will be described in Section 4) in feature 
dimension C1 and they are clustered into 4, 8 and 16 centroid 
kernels optimally. The fidelity of representing the original 
7,070 kernels by their nearest centroids improves monotonically 
when the number of centroids increases from 4 to 16. 

For the case of diagonal covariance, which is assumed for 
this study, the multivariate Gaussian pdf can be written as a 
product of all its scalar, statistically independent components. 
Consequently, the corresponding multivariate KLD is linearly 
additive in terms of its scalar components. This property forms 
the foundation of why our non-uniform kernel allocation 
algorithm, which will be presented in the next section, can be 
decomposed into a scalar search in feature dimension.

3. NON-UNIFORM KERNEL ALLOCATION FOR 
HMM COMPRESSION 

Our non-uniform kernel allocation algorithm searches for the 
feature dimension to allocate successively one extra centroid 
kernel (from the set generated in the optimal clustering 
procedure) to a centroid kernel subset. The dimension for 
allocating the extra kernel is chosen, based upon the maximum 
reduction of total KLD distortions. The KLD is computed by 
measuring the distortion between the kernels used in the 
unquantized, original HMM and their nearest neighbors (in the 
centroid kernel subset). It is searched component by component 
in scalar feature dimensions because KLD distortion between 
two multivariate Gaussian kernels with diagonal covariances is 

linearly additive in its scalar components. It is still, by all 
means, a greedy search algorithm. But as it will be shown later, 
despite its greedy nature, this algorithm gives virtually the same 
result as an (M, L) search where a much larger M (retained 
candidates) is kept in each search cycle. 

Fig. 1. 7,070 distributions in feature dimension C1 are clustered 
into 4, 8 and 16 centroid kernels by LBG clustering 

Table 1. Pseudocode of non-uniform kernel allocation method 

for i = 1 … D

 starting with 1 kernel per dimension:  ki = 1 

compute current KLD:  Qnew

successively allocate one extra kernel 

until Qnew < Threshold

Qold  = Qnew 

∆Q = 0 

for i = 1 … D

add 1 kernel in the i-th dimension:  ki ++ 

compute current KLD:  Qnew

if (Qold  - Qnew) > ∆Q

∆Q = Qold - Qnew  

dim = i select the dimension  

remove the allocated kernel in the i-th 
dimension:  ki -- 

allocate one extra kernel in the dimension of 
maximum KLD reduction:  kdim ++ 

Qnew = Qold - ∆Q
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Strictly speaking, the distortion measure for HMM 
compression should be the KLD between the state pdf of the 
original model and the “quantized” state pdf, parameterized by 
the selected kernels in the compressed centroid subset. 
However, the state output pdf is in general a mixture of 
Gaussians, there is no closed-form for computing the 
corresponding KLD. The numerical computation of KLD in a 
multi-dimensional space is somewhat prohibitive for a complex 
HMM. We therefore resort to a computationally tractable, 
approximate solution by measuring the KLD between the 
Gaussian kernels used in the original HMMs and their nearest 
neighbors in a subset of successively allocated centroids. 

The non-uniform kernel allocation method starts with 
allocating one kernel in each dimension and the corresponding 
KLD is computed. Then one extra kernel is tentatively assigned 
in each dimension in turn and a corresponding reduction of 
KLD is computed. The feature dimension that yields the 
maximum reduction of KLD is assigned with one more kernel 
and the procedure then repeats itself. The algorithm stops when 
the total KLD becomes less than a given threshold or optionally, 
the total number of kernels reaches a preassigned limit. The 
pseudocode of the non-uniform kernel allocation is given in 
Table 1. 

4. EXPERIMENTAL RESULTS 

Our optimal clustering and non-uniform kernel allocation 
method was tested on the DARPA 991-word Resource 
Management (RM) database. The standard SI-109 training data 
set of 3,990 utterances was used for training the HMMs. The 
CMU 48 phone set was used to create a context-dependent 
(CD) model, with 1,414 tied states and a mixture of 5 
Gaussians per state. Altogether, there are 7,070 kernels used in 
the CD HMM. The features are the conventional 39-dimension 
MFCCs (12 static MFCCs, log energy, and their first- and 
second-order time derivatives). The Sep92 test set was used for 
evaluation with the standard word-pair grammar of perplexity 
60. The baseline performance of the original, uncompressed 
HMM is 7.35% word error rate (WER). 

4.1. Clustering and allocation results

Fig. 2. KLD vs. number of clustered centroid kernels 

Fig. 2 shows the kernel clustering performance where 
corresponding KLD is plotted against the number of kernels for 
the features of C1, C2, C12, E, ∆E and ∆∆C12. Except at smaller 
number of kernels (i.e., lower rate), the log-log plot shows 
relatively straight, parallel lines of rate-distortion curves where 
different features exhibit different intersecting points. The rate 
distortion curves of other features show similar trends. 

Based on the component rate-distortion curves of different 
features, the non-uniform kernel allocation algorithm generates 
a composite rate-distortion curve, which is plotted in Fig. 3 
where KLD is shown against average kernels per dimension. 
The non-uniform allocation yields a better rate-distortion curve 
than that of fixed, uniform kernel allocation, which is also 
plotted (broken line) in the same figure. Fig. 4 gives the 
recognition performance curves against the average number of 
kernels per dimension for both fixed and adaptive, non-uniform 
kernel allocations. As expected, with comparable number of 
kernels, the non-uniform allocation generally gives better 
recognition performance than the fixed allocation, due to its 
lower KLD. We also found that our greedy algorithm gives 
virtually the same results as an (M, L) search with M = 200 and 
L = 39. 

Fig. 3. Total KLD vs. average number of kernels per dimension 

Fig. 4. Recognition performance vs. average number of kernels 
per dimension  

4.2. Experimental Results
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In Figs. 5 and 6, the recognition performance (WER) is plotted 
vs. memory storage and computation (multiplication/division 
only) for different compression ratios, respectively. For the 
storage, one byte (256 possibilities) is used for encoding the 
index of each kernel used in both fixed and adaptive, non-
uniform kernel allocation. For the computation, the log 
likelihood for the j-th state is calculated as follows:   
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As Gaussian kernels are clustered and shared in the scalar 
dimension, the third term inside the square bracket, 

22 2)( jmijmitio σµ− , is pre-computed and stored in a small table 

shared among all output pdf’s. For the fixed and the non-
uniform kernel allocations, the addition/subtraction requirement 
is similar, about 50% of the original HMM’s complexity. 
Therefore, we only plot the computation ratios for 
multiplication/division only. From the two figures, both the 
fixed and the non-uniform allocation yield significant savings of 
storage and computations. With comparable computation and 
memory resources, the non-uniform allocation generally gives 
better performance than the fixed allocation, especially for 
larger compression ratios (i.e., less kernels). 

Fig. 5. Storage vs. recognition performance 

5. CONCLUSIONS 

We propose an HMM model compression algorithm for optimal 
clustering and non-uniform allocation of Gaussian kernels in 
HMM feature (scalar) dimension. The symmetric KLD is used 
as the universal distortion measure for both kernel clustering 
and allocation. Non-uniform kernel allocation in model 
compression is performed successively, one kernel at a time, by 
searching over all feature dimensions. Computationally efficient 
and small footprint, compact HMMs can be custom made at any 
operating point along the rate-distortion curve. Tested on the 
RM database, we found the original, context-dependent phone 
HMMs can be compressed to 15-20% of its original size and 1-

5% of the original multiplication/division operations, with 
almost negligible recognition performance degradation. 
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Fig. 6. Multiplication/division vs. recognition performance 
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