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Özgür Çetin∗ and Mari Ostendorf

Department of Electrical Engineering, University of Washington, Seattle, WA

{cozgur,mo}@ee.washington.edu

ABSTRACT

This paper introduces a multi-rate extension of hidden Markov
models (HMMs), for joint acoustic modeling of speech at multi-
ple time scales. The approach complements the usual short-term,
phone-based representation of speech with wide modeling units
and long-term temporal features. We consider two alternatives
for coarse scale, representing either phones, or syllable structure
and lexical stress, and both fixed- and variable-rate dependencies
between time scales. Experiments on conversational telephone
speech (CTS) show that the proposed multi-rate approach signifi-
cantly improves recognition accuracy over HMM- and other cou-
pled HMM-based approaches (e.g. feature concatenation) for com-
bining short- and long-term acoustic and linguistic information.

1. INTRODUCTION

The current acoustic modeling paradigm in speech recognition is
largely based on representing words as a sequence of phones which
are characterized by HMMs. Short-term spectral features are used,
and though context-dependent phones and dynamic features im-
plicitly incorporate information from longer time scales, current
systems focus on acoustic variability over less than 100 ms. This
approach has led to impressive results, but the state-of-the-art per-
formance on conversational speech still lags far beyond that of hu-
mans. Many factors contribute to this performance gap, but the in-
accuracy of HMM-based acoustic models for characterizing vari-
ability associated with conversational speech is believed to be a
large contributing factor. Our goal in this paper is to improve the
acoustic modeling accuracy by incorporating linguistic and acous-
tic information from time scales longer than phones, especially
from syllables, in a multi-scale statistical modeling paradigm.

Phones are important for speech recognition, but there exists
ample evidence that time scales longer than phones, especially syl-
lables, also carry useful information. Syllables play a central role
in human speech perception of English. Pronunciation and dura-
tional variability observed in conversational speech show a high
degree of dependence on syllable structure. For example, phones
occurring in a syllable onset are more likely to be preserved than
those in a coda, which are more likely to substituted by another
phone or completely deleted [1]. In addition, data-driven corpus
studies have consistently shown that discriminative information for
recognizing speech extends beyond 100 ms [2].

In this paper, we incorporate long-term acoustic and linguistic
information into speech recognition by joint statistical modeling
of speech at phone and syllable time scales via a new multi-rate
coupled HMMs architecture. In a 2-rate HMM acoustic model,
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we model speech using both the modeling units and the feature se-
quences corresponding to phone and syllable time scales. The fine
scale in our models corresponds to the traditional phone HMMs
with cepstral features, whereas for the coarse scale, we will ex-
plore two alternatives for characterizing either phones broadly,
or syllable structure and stress, with long-term features extracted
from 500 ms windows. Our multi-scale approach differs from
implicit approaches such as [3] and [4], where syllable features
are used for acoustic model clustering or pronunciation modeling,
and from HMM-based approaches such as segment models and
autoregressive HMMs [5], which represent long-term dependence
and higher-order statistics in a single stream of short-term features
but do not involve any multi-scale modeling. It also differs from
other multi-stream approaches that incorporate long-term features
[6] in that the multi-rate model reduces the redundancy of highly-
correlated long-term features by downsampling. As our experi-
ments will demonstrate, such redundancy reduction is important
for both confidence estimation and classification accuracy when
combining information from multiple sources.

Multi-scale modeling based on multi-rate HMMs is specif-
ically designed to utilize long-term features and is complemen-
tary to the research in new acoustic front-ends looking beyond the
short-term spectrum, e.g. [7, 8]. The traditional approach for uti-
lizing new features is to concatenate them with existing cepstral
features after oversampling and use them in standard HMM-based
models. However, HMMs have become so tuned to short-term
features that their use might obscure the gains from new features,
especially those from long-time scales. Statistical models and fea-
tures interact and simple HMM-based combination schemes might
not fully utilize complementary information in long-term features.
We find that both the redundancy reduction and the selection of ap-
propriate modeling units are important for utilizing long-term fea-
tures. We also find that variable-rate sampling approaches which
focus more on temporally varying regions, are particularly help-
ful for extracting multi-scale feature sequences, improving perfor-
mance over fixed-rate approaches.

The paper proceeds with an introduction to multi-rate HMMs
and their variable-rate sampling extension, followed by discussion
of their applications to acoustic modeling. Then, we present exper-
imental results on a CTS task and summarize the key contributions.

2. MULTI-RATE HIDDEN MARKOV MODELS

An HMM characterizes a length T time series, {ot}, called obser-
vations, through an underlying hidden state sequence, {st},

p({ot}, {st}) ≡
T−1∏

t=0

p(st|st−1) p(ot|st)
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where the state sequence is assumed to be first-order Markov, s−1

is a null start state, and observations are conditionally independent
of everything else given their respective states [9]. The HMM in-
dependence assumptions lead to computationally efficient proba-
bilistic inference and parameter estimation algorithms [9], but they
also limit what can efficiently be represented by HMMs. HMMs
have a number of intrinsic limitations for representing multi-scale
stochastic processes and long-term context. First, representation of
composite state structures in an HMM requires assigning a unique
state to each state configuration, resulting in an exponential state
space which increases both the computational cost of inference
and the number of free parameters. Second, representation of
multi-scale observation sequences in an HMM requires oversam-
pling of coarser-scale sequences to make them synchronous with
the finer-scale ones, resulting in skewed class posterior estimates
and overconfident classification decisions due to overcounting ev-
idence from coarser scales. Lastly, the information between the
past and present observations as represented by an HMM, for many
state topologies, decays exponentially fast with the time lag, due
to the underlying Markov chain structure.

2.1. Basic Multi-rate HMM

The multi-rate HMM is a generalization of the HMM to multiple
time scales. The multi-rate HMM decomposes process variability
into scale-based parts, characterizing both the intra-scale depen-
dencies and time evolution within each scale-based part, as well as
inter-scale couplings. In a K-rate HMM, the process is modeled
at K time scales, and associated with each scale is a hidden state
sequence, {sk

tk
}, and an observation sequence, {ok

tk
}, k denoting

the scale level. Scales are organized in a hierarchical manner from
the coarsest k = 1 to the finest k = K, and the k-th scale is
Mk times faster than the (k − 1)-th scale, i.e. Tk = MkTk−1 for
k > 1, Tk denoting the sequence length at the k-th scale. The joint
distribution of state and observation sequences is modeled as

p({o1
t1}, {s1

t1}, . . . , {oK
tK

}, {sK
tK

}) ≡
K∏

k=1

Tk−1∏

tk=0

p(sk
tk
|sk

tk−1, s
k−1
�tk/Mk�) p(ok

tk
|sk

tk
) (1)

where sk
−1 is a null start state for the k-th scale, �x� denotes

the greatest integer less than or equal to x, and hence �tk/Mk�
is the index of the observation at the (k − 1)-th scale covering
the tk-th observation at the k-th scale. In the multi-rate HMM,
statistical dependencies across time characterize the temporal dy-
namics of the scale-based components, whereas those across scale
characterize the interaction between the components. Dependen-
cies across time are first-order Markov; those across scale are tree
structured. A K-rate HMM essentially involves K multi-length
HMMs, which are coupled via their states. A graphical model il-
lustration of the multi-rate HMM appears in Figure 1.

The various probabilistic inference tasks in multi-rate HMMs,
such as evaluating marginal probability of observations and the
state a posteriori probabilities, are solved by a multi-rate gener-
alization of the HMM forward-backward algorithm. The overall
computational cost of this algorithm is O(TKNK+1) for a K-rate
HMM (assuming that the state cardinality at each scale is equal to
N ), whereas collapsing multiple states into a single state and in-
voking the HMM forward-backward algorithm directly would in-
duce O(TKN2K) cost, which is exponentially worse. The param-
eter estimation of multi-rate HMMs is done via the expectation-

Fig. 1. Graphical model illustration of a multi-rate HMM with
K = 2 and M2 = 3, with the coarse scale at the top. States and
observations are depicted as circles and squares, respectively.

maximization (EM) algorithm, automatically dealing with hidden
states in multi-rate HMMs. For details, see [10].

State and observation factoring are also used in variations of
HMMs for single-rate processes, e.g. factorial HMMs [11] and
coupled HMMs [12], where multiple same-rate state and obser-
vation sequences are involved, in part to reduce the number of
free parameters (for more robust estimation) and in part to allow
asynchrony across sequences. The multi-rate HMMs also bene-
fit from these advantages but are better suited for modeling long-
term context (captured in the coarse scales) and reducing feature
redundancy. Two-dimensional multi-resolution HMMs [13] and
hierarchical HMMs [14] are examples of multi-scale models simi-
lar to multi-rate HMMs. Like the multi-rate HMMs, these models
employ tree-structured coarse-to-fine dependencies to characterize
inter-scale dependencies, but they are more restrictive in terms of
the assumptions they make: states at a given scale are conditionally
independent of their distant relatives given their parent or ancestor
states, and conditionally, the state sequence at a given scale is dis-
connected and not a Markov chain, unlike in multi-rate HMMs.

2.2. Variable-rate Extension

In the basic multi-rate HMM, we assume that each observation at
the scale k covers a fixed number, Mk, of observations at the next
finest scale, the (k − 1)-th scale. A fixed-rate downsampling ra-
tio implies that features in each scale uniformly cover the original
physical process. However, phone durations in English range from
10 − 30 ms for stop consonants to 50 − 150 ms for vowels, and
a time-invariant sampling might not be of sufficient resolution to
recognize phones with very short duration. In addition, a variable-
rate sampling method can tailor the signal analysis to focus more
on information-bearing regions such as transitions. Thus, we ex-
tend the basic multi-rate HMM paradigm to allow for time-varying
sampling rates between scales, so the number of observations at
one scale corresponding to an observation at the next coarsest scale
temporally varies. For example, the original 2-rate HMM factor-
ization assuming a fixed sampling ratio, M , is modified to

p({o1
t1}, {s1

t1}, {o2
t2}, {s2

t2}|{Mt1}) ≡
∏T1−1

t1=0 p(s1
t1 |s1

t1−1)

× p(o1
t1 |s1

t1)
∏l(t1)+Mt1−1

t2=l(t1) p(s2
t2 |s1

t1 , s2
t2−1) p(o2

t2 |s2
t2) (2)

where Mt1 and l(t1) denote the number and starting index, respec-
tively, of observations at the fine scale corresponding to the t1-th
observation at the coarse scale. We require l(t1) =

∑t1−1
τ1=0 Mτ1 .

In the variable-rate factorization of Equation 2, we assumed
that sampling rates Mt1 are given (deterministic). The variable-
rate sampling framework is partially motivated to focus on inter-
esting regions over the signal space, where such regions are deter-
mined during signal processing. It is straightforward to make Mt

stochastic, as in segment models [5] and hierarchical HMMs [14],
but the cost is higher and it is not implemented in this work.
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3. MULTI-RATE HMM ACOUSTIC MODELS

We use 2-rate HMMs for joint acoustic modeling of speech at
two time scales in two alternative ways. In both applications, the
goal is to complement the usual cepstrum-based subphone mod-
els at the fine scale with long-term temporal features and wide-
context modeling units at the coarse scale. We use a variation of on
TempoRAl PatternS (TRAPS) [7], the so-called hidden activation
TRAPS (HAT) [8]) as long-term features. (TRAPS are a method
for data-driven, posterior-based feature extraction from very long
time windows using neural network classifiers trained to predict,
for example, phones. See [7, 8] for details.) The two applications
differ in the phenomenon they characterize in the coarse scale. In
the first case, the coarse scale characterizes phones broadly using
HATs trained on phone targets, whereas in the second case the
coarse scale characterizes a larger-scale phenomena, lexical stress
and syllable structure, using HATs trained on such targets.

3.1. 2-rate HMM Phone Models

The 2-rate HMM phone models characterize phones at two time
scales. The fine scale corresponds to the traditional HMM-based
phone models, where we use a three-state left-to-right state transi-
tion topology and cepstral features. The coarse scale broadly char-
acterizes phones using long-term temporal features (HATs trained
on phone targets). Each state in the coarse scale is associated with
a whole phone (not just part of it as in fine-scale states). Similar
to context-dependent modeling in phonetic HMMs, we use sepa-
rate cross-word, left and right context-dependent modeling units
in both fine and coarse chains of the 2-rate HMM phone models.

3.2. 2-rate HMM Joint Syllable/Stress and Phone Models

In the 2-rate HMM joint syllable/stress and phone models, the fine
scale again represents the phones using short-term cepstral fea-
tures, but the coarse scale represents syllable structure and lexical
stress. Specifically, the coarse scale involves: (1) acoustic units
corresponding to the syllable structure and stress (onset, coda,
and ambisyllabic consonants; and, stressed and unstressed vowels)
with two additional classes for silence and non-speech sounds such
as noise (C/V classes in short); and (2) acoustic features (HATs)
trained to predict to these seven classes of sounds. The models for
words are composed by gluing together the 2-rate HMMs corre-
sponding to syllable constituents in words. For example, the model
sequence corresponding to the word seven is constructed by de-
composing it using a stress- and syllable-marked dictionary:

seven [ s + eh [ v ] . ax n ]

where the phone sequence between an open bracket and a closed
one corresponds to a syllable, the [ v ] is ambisyllabic, and +
and . are stress and no-stress markers, respectively. Using this
pronunciation of seven, the coarse and fine state sequences in its
composite 2-rate HMM are obtained as:

CO | V1 | CA | V0 | CC
s(1-2-3)|eh(1-2-3)|v(1-2-3)|ax(1-2-3)|n(1-2-3)

where | denotes a 2-rate HMM boundary; CO, CC, and CA de-
note onset, coda, and ambisyllabic consonants, respectively; V0
and V1 denote unstressed and stressed vowels, respectively; and,
x(1-2-3) denotes the three-state sequence corresponding to the
phone x. In our implementation, we again use context-dependent
modeling units at both scales.

4. EXPERIMENTS

4.1. Task

We perform recognition experiments in a medium vocabulary CTS
task, that of recognizing speech using a vocabulary of the 2, 500
most frequent words in Switchboard. It is a scaled-down version
of the 2001 NIST Hub-5 recognition task used for evaluating large
vocabulary recognizers, in terms of both amount of training data
and vocabulary coverage during testing. The training data consists
of 69 hours of speech from the Switchboard and Callhome corpora,
and the testing data is a 0.9 hour subset of the 2001 NIST Hub-5
evaluation data. The resulting out-of-vocabulary (OOV) rate on the
test set is 1%, which is similar to the OOV rates in full-vocabulary
tasks. It has been shown that new techniques proved to be useful on
this task are likely to transfer to the full-vocabulary tasks [15]. The
language model (LM) is fixed to a bigram LM trained on Switch-
board, Callhome, and Broadcast News transcriptions.

We use 12 perceptual linear prediction (PLP) coefficients and
the logarithm of energy as well as their first- and second-order
derivatives as our short-term features. For the coarse-rate features,
we use HATs which are trained on either phone targets (resulting
in a 23-dimensional feature after principle component analysis), or
seven sound classes related to the syllable structure and stress (re-
sulting in a 21-dimensional feature after concatenating two deriva-
tives). Per-side mean subtraction and variance normalization have
been applied to both PLP and HAT features.

4.2. Training and Testing Procedures

We used the following procedure to train and test the 2-rate HMM
acoustic models. We first train separate HMM systems using fea-
tures and subword modeling units corresponding to each chain and
determine context-dependent state tying in the Hidden Markov
Toolkit (HTK) [17]. We then transfer these HMM systems into
the Graphical Models Toolkit (GMTK) [16] and continue indepen-
dent EM training with mixture splitting until obtaining 8 mixture
components per state. The state-conditional output distributions in
these fine- and coarse-scale HMMs are used to initialize the output
distributions in the fine and coarse chains in the 2-rate HMM sys-
tems. Then, we jointly train all parameters until the desired num-
ber of mixture components per state are achieved. All recognition
experiments are performed by GMTK rescoring of 500-best lists
generated by HTK (with a 19.3% oracle word error rate (WER)
and 42.5% 1-best WER). The reported HMM systems in GMTK
are the full-trained versions of HMM systems that were used to
initialize the fine and coarse chains in the 2-rate HMM systems.
The baseline HMM system with PLPs uses 32 mixture compo-
nents per state, and the total number of parameters in all systems
(except the HMM system with C/V HATs) are roughly made equal
by adjusting the number of mixture components per state.

In experiments with the basic multi-rate HMMs, we used a
fixed-rate downsampling ratio of three, whereas in experiments
with the variable-rate extension of multi-rate HMMs, we dynami-
cally sampled the coarse features (phone or C/V HATs) when they
significantly differ from the ones occurring before, so that on av-
erage one in three coarse feature frames is kept.

4.3. Results

The WERs of the 2-rate HMM system modeling phones and re-
lated HMM systems are presented in Table 1. This table also re-
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System WER % # of tied states

HMM-PLP 42.3 4986
HMM-HAT 44.7 4788
HMM-PLP/HAT 40.1 7906
HMM-PLP+HAT 41.1 4986/3163
MSTREAM (1-state) 40.1 4986/3163
MSTREAM (3-state) 39.7 4986/4788
MHMM 39.9 4986/1438
VHMM 39.1 4986/1438

Table 1. The performance of 2-rate HMM system modeling
phones, and related systems, using PLPs and/or phone HATs. The
number of states for the MSTREAM systems is per phone at the
HAT stream. In the system names, ·/· and ·+ · indicate state-level
feature concatenation vs. utterance-level score combination. The
pairs in the last column denote states in PLP vs. HAT streams.

System WER % # of tied states

HMM-PLP 42.3 4986
HMM-HAT 50.4 95
HMM-PLP/HAT 42.8 7091
HMM-PLP+HAT 42.1 4986/95
MSTREAM (1-state) 42.0 4986/95
MHMM 40.9 4986/84
VHMM 40.6 4988/84

Table 2. The performance 2-rate HMM system modeling sylla-
bles, and related systems, using PLPs and/or C/V HATs, designed
to predict C/V classes. See Table 1 caption for further details.

ports results with the 2-stream coupled HMMs (MSTREAM) [6],
which are similar to 2-rate coupled HMMs, but do not reduce the
redundancy of coarse features by downsampling. The 2-rate HMM
system (MHMM) gives equivalent performance improvements to
the HMM-based feature concatenation and score combination and
the multi-stream approaches, but with smaller models, whereas the
variable-rate system (VHMM) gives a clear improvement.

The WERs of the 2-rate HMM system modeling syllable struc-
ture and stress and the related HMM and multi-stream systems are
reported in Table 2. Neither the HMM combination nor the multi-
stream modeling approaches are successful in utilizing C/V HATs,
which is unlike the multi- and variable-rate modeling approaches
that significantly improve over the baseline HMM system. The
2-rate HMM systems achieve significant gains from representing
syllable structure and stress, with a very small increase in parame-
ters, though the improvements are not as large as those from repre-
senting phones broadly. The low temporal complexity of syllable
phenomena, as represented in our models, seems to be limiting.

5. CONCLUSIONS

This paper proposed multi- and variable-rate acoustic models for
speech recognition, based on a multi-scale extension of HMMs,
multi-rate HMMs. The usual subphone modeling units and short-
term spectral features are complemented with wide-context model-
ing units and long-term temporal features. The novel coarse scale
in these models is used to represent either phones, or syllable struc-
ture and stress. Experimental results on a challenging CTS task
showed that the multi- and variable-rate HMMs significantly im-

prove recognition accuracy over the HMM and alternative multi-
stream systems. Significant improvements with a very small num-
ber of additional parameters were found from representing syllable
structure, though the gains so far are not as large as those from rep-
resenting phones. Further gains could be possible from increasing
number of parameters in the proposed models.
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