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ABSTRACT

A recent series of papers [1, 2, 3, 4] introduced Subspace Con-
strained Gaussian Mixture Models (SCGMMs) and showed that
SCGMMs can very efficiently approximate Full Covariance Gaus-
sian Mixture Models (FCGMMs); a significant reduction in the
number of parameters is achieved with little loss in the accuracy of
the model. SCGMMs were arrived at as a sequence of generaliza-
tions of diagonal covariance GMMs. As an artifact of this process
the initialization of SCGMM parameters in that work is complex
i.e., relies on best parameter settings of less general models. This
paper overcomes this problem by showing how an FCGMM can
be used to give a simple and direct initialization of an SCGMM.
The initialization scheme is powerful enough that as the number
of parameters in an SCGMM approaches that of an FCGMM (i.e.,
large SCGMMs) further training of the SCGMM is unnecessary.

1. INTRODUCTION

In most state-of-the-art speech recognition systems, hidden
Markov models (HMMs) are used to estimate likelihood of an
acoustic observation given a word sequence. One of the key in-
gredients of the HMM models is a probability distribution p(x|s)
for the acoustic vector x ∈ R

d at particular time, conditioned on
an HMM state s. Typically, p(x|s) is taken to be a Gaussian mix-
ture model (GMM), or more generally, a mixture of exponential
models:

P (x|s) =
X
g∈s

πgE(x;θg, f), (1)

where

E(x;θ, f) =
eθ�f(x)

Z(θ)
, (2)

is the general exponential model and Z(θ) =
R

Rd eθ�f(x)dx is
the normalizer for the exponential distribution. From computati-
nal and storage considerations most speech recognition systems
take E(x; |θg , f) to be a diagonal Gaussian distribution. A recent
series of papers [1, 2, 3, 4] introduced Subspace Constrained Gaus-
sian Mixture Models (SCGMMs) that provide an efficient “slider”
between Diagonal Covariance GMMs (DCGMMs) and Full Co-
variance GMMs (FCGMMs). In that work SCGMMs were arrived
at via a sequence of generalizations of DCGMMs and hence, for
historical reasons, the initialization of the parameters of SCGMMs
was complex i.e., relied on the best available parameter settings of
less general models. Effectively with that approach one needed
to have training software for less general models in order to ar-
rive at an initialization for an SCGMM. This paper overcomes that
problem by providing a simple and direct method to initialize pa-
rameters of an SCGMM model.

A full covariance gaussian

N (x;Σ, µ) =
exp

“
− 1

2
(x− µ)�Σ−1(x − µ)

”
p

det(2πΣ)
(3)

can be written in form of an exponential model as follows:

N (x;Σ, µ) = E(x;θfc, ffc) =
eθ�fcffc(x)

Zfc(θfc)
, (4)

where we define the full covariance features ffc to be

ffc(x) = (x�,−vec(xx�)
�

)
�

, (5)

and vec is an operator on symmetric matrices defined as a vector
containing the elements of the lower triangular portion with the
diagonal scaled by 1/

√
2

vec(X) = (
X11√

2
, X12,

X22√
2

, X13, . . . ,
Xdd√

2
)
�

. (6)

It can be verified that in terms of these features the model param-

eters can be written θfc = (ψ�,p�)
� ∈ R

(d+1)(d+2)/2, where
the model parameters ψ ∈ R

d and p ∈ R
d(d+1)/2 corresponds to

the linear and quadratic features. In terms of the precision matrix
P = Σ−1 the quadratic model parameters p are

p = vec(P) (7)

and the linear model parameters are

ψ = Pµ. (8)

The normalizer for the full covariance model in terms of P and ψ
is

2 log(Z(θ)) = log det

„
P

2π

«
− ψ�P−1ψ . (9)

A Subspace Constrained Gaussian, [1], is an exponential
model with features Φffc(x) ∈ R

D , where Φ ∈ R
D×(d+1)(d+2)/2

and λ ∈ R
D . S(x;λ,Φ) denotes the Subspace Constrained Gaus-

sian and satisfies the relation

S(x;λ,Φ) = E(x;λ,Φffc). (10)

This paper will describe how, with minimal computational effort,
one can obtain a good initial value for the basis matrix Φ and the
exponential model parameters λg , g ∈ s from an FCGMM. As the
name suggests the SCGMM can be viewed as an FCGMM, where
the full covariance exponential model parameters are constrained
to be in a subspace, i.e. θg = λg

�Φ =
PD

k=1 λgkφk, where φk

is the vector corresponding to the kth row of Φ.
Section 2 describes how to find a good initial basis Φ, Section

3 describes how to initialize λg and Section 4 gives experimental
results with the new initialization scheme.
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1.1. Previous Methods to Initialize SCGMM models

In [1] the SCGMM model was initialized with a Subspace Preci-
sion And Mean (SPAM) model. A SPAM model is a special case
of an SCGMM model, where the basis matrix Φ is block diagonal
of the form

Φ =

„
Φ11 0
0 Φ22

«
,

where Φ11 ∈ R
D1×d corresponds to the linear features and

Φ22 ∈ R
D2×d(d+1)/2 corresponds to the quadratic features and

D1 + D2 = D. The SPAM model used to initialize the SCGMM
model was trained with the methods described in [5]. This SPAM
model was initialized using a method that used a quadratic approx-
imation of the log likelihood function as described in [2]. In this
paper we avoid the use of a SPAM model altogether and use the
ideas of [2, 4] to directly initialize the SCGMM model.

2. SUBSPACE APPROXIMATIONS

The parameters of a GMM are trained typically to maximize the
likelihood of the training data {xk}N

k=1. One starts with an ini-
tial value for the parameters and then iteratively updates them us-
ing the Expectation Maximization algorithm [6] with each sweep
of the data. While the initialization problem for DCGMMs and
FCGMMs is trivial, for SCGMMs it is complicated by the fact
that one requires an initial choice for both the basis Φ and the
exponential model parameters λg . Our approach is to find a suit-
able quadratic approximation to the likelihood function and then
to explicitly optimize this quadratic function to obtain an initial
value for the SCGMM parameters. Additionally, in our approach
the initialization process does not go through the data. Instead,
one starts with a full-trained FCGMM model and constructs an
SCGMM model by a quadratic approximation. More precisely, if
θg represents a Gaussian g in the FCGMM, then we can solve:

min
λg ,Φ

X
g

wg‖θg −
DX

k=1

λgkφk‖2
2. (11)

The basis vectors, {φk}D
k=1, minimizing this problem are the prin-

cipal components of θg . That is φk, k = 1, . . . , D corresponds to
the eigenvectors with the top D largest eigenvalues of the covari-
ance matrix of {θg}G

g=1 with weights wg , 1 =
P

g wg . Since we
know how to solve this problem efficiently we can use this solu-
tion as an initial choice for optimizing the likelihood over the data.
Notice that if the norm in (11) is replaced by another norm, e.g.
‖θ‖2

A = θ�Aθ, where A is a positive definite symmetric matrix,
the solution can once again be found by noting that the transform
T (θg) = A1/2θg changes the norm back to the Euclidean dis-
tance, i.e. ‖θ‖2

A = ‖T (θg)‖2
2. This flexibility in the choice of A

suggests that we should choose it so that the likelihood criterion is
well-approximated by the quadratic function implied by (11).

The covariance matrix whose eigenvalues and eigenvectors we
are seeking is

Σθ =
X

g

wg(T (θg) − µθ)(T (θg) − µθ)
T , (12)

where
µθ =

X
g

wgT (θg). (13)

Note that the size of the covariance matrix Σθ ∈
R

(d+1)(d+2)/2×(d+1)(d+2)/2 is growing quadratically in d
and it is difficult to handle the eigenvalue problem for values
d > 200. In the case we consider in this paper d = 40 and so we
are okay.

2.1. The Expectation Maximization Algorithm

To determine a good choice for the metric matrix A we shall ap-
proximate the likelihood with a quadratic function of the param-
eters. To do this we need to review how the parameters are esti-
mated in the Expectation Maximization (EM) algorithm, [6]. The
EM algorithm introduces an auxilliary function Q(Θ,Θ̂); where
Θ, Θ̂ denotes model parameters {πg , θg}g and {π̂g , θ̂g}g re-
spectively. The auxilliary function satisfies Q(Θ,Θ) = 0 and
L(Θ)− L(Θ̂) ≥ Q(Θ, Θ̂) where L(Θ) =

P
t log p(xt|st) is the

log likelihood of the training data. The auxilliary function is given
by

Q(Θ, Θ̂) =
X

t

X
g∈st

γtg log
πgE(xt; θg, f)

π̂gE(xt; θ̂g, f)

= −
X

g

n(g)�g(Θ), (14)

where γtg are the occupation counts

γtg =

(
π̂gE(xt;θ̂g ,f)

P
g∗∈st

π̂g∗E(xt ;θ̂
∗
g ,f)

if g ∈ st

0 otherwise,

n(g) =
P

t γtg and

�g(Θ) = − 1

n(g)

X
t

γtg log
πgE(xt; θg, f)

π̂gE(xt; θ̂g, f)
. (15)

To improve the likelihood L(Θ) > L(Θ̂) it is sufficient to maxi-
mize the auxilliary function Q(Θ, Θ̂) with respect to Θ. The max-
imum value with respect to the priors, means and variances for an
FCGMM is given by:

π̃g =
n(g)P

g∗∈s n(g∗)
, (16)

µg =
1

n(g)

X
t

γtgxt and

Σg =
1

n(g)

X
t

γtg(xt − µg)(xt − µg)
T .

Dropping terms that are independent of θg and optimizing with
respect to πg in (15) we get

�g(Θ) = θ�g
1

n(g)

X
t

γtgf(xt) − π̃g log Z(θg), (17)

where π̃g is given in (16).

2.2. Determining the Frobenius Norm

As we iterate the update formulas of the EM algorithm to con-
vergence the gradient of (17) approaches zero. Thus for a value
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Θ̃ close to the optimal Θ the following quadratic approximation
holds by virtue of the Taylor series of �g(Θ̃):

�g(Θ̃) ≈ −(θg − θ̃g)
�
Hθg (θg − θ̃g), (18)

where Hθg is the Hessian of − log Z(θ) at θg . Setting θ̃g to be
the subspace constrained gaussians approximation to the full co-
variance gaussians we see that the auxilliary function can be ap-
proximated by the quadratic form −P

g π̃g‖θ̃g −θg‖2
Hθg

. Ignor-
ing the sign the preceeding quadratic form fails to conform to (11)
and so we make an additional approximation by replacing Hθg

with Hθ̄ , where θ̄ is some representative “best” approximation
to θg . To choose the representative θ̄ in a principled fashion we
choose it so as to minimize the average Kullback Leibler diver-
gence minθ̄

P
g πgD(θg‖θ̄), where

D(θg‖θ̄) = log

„
Z(θ̄)

Z(θg)

«
+ (θg − θ̄)Eθg [f(x)]

and

Eθg [f(x)] =

„
µg

vec(Σg + µgµ�
g )

«
.

The solution to this problem is the θ̄ that corresponds to the total
mean and covariance of the gaussians, i.e.

µ̄ =
X

g

πgµg

Σ̄ =
X

g

πg(Σg + µgµ�
g ) − µ̄µ̄�.

We will write P̄ = Σ̄−1 and ψ̄ = P̄µ̄ for the corresponding
exponential model parameters.

Now the Hessian Hθ̄ is a matrix of size (d + 1)(d + 2)/2 ×
(d + 1)(d + 2)/2. Thus the computation cost of computing H

1/2

θ̄
will have a cost similar to the cost of computing the eigenvalues of
Σθ . However we shall see that the computation of H1/2

θ̄
θg can be

simplified considerably.

2.3. Finding a Square Root of the Hessian

For a symmetric matrix X with eigenvalues ei > −1 we have the
following relation

log det(I + X) =
X

i

log(1 + ei)

=
∞X

k=1

(−1)k+1

k

X
i

ek
i

=
∞X

k=1

(−1)k+1

k
trace(Xk).

Using the above relation up to order 2 in Xk yields the expression

log det(P + ∆P) ≈ log detP + traceX − 1

2
traceX2,

where X = P−1/2∆PP−1/2. The Hessian can now be com-
puted by identifying second order terms in the Taylor expansion of
log Z(θ + ∆θ). We find

∆θ�Hθ∆θ =
1

2
traceX2 + ‖P−1/2∆ψ − XP−1/2ψ‖2.

Thus the linear transform T ,

T (∆θfc) =

„
P−1/2(∆ψ − ∆PP−1ψ)

vec(P−1/2∆PP−1/2)

«
,

has the property that ‖∆θ‖Hθ = ‖T (∆θ)‖2, and computing this
transform only involves computing the square root, inverting ma-
trice and simple multiplication involving matrices of size d × d.
This is considerably cheaper than the direct computation of H1/2

θ̄
.

2.4. The Basis Selection Algorithm

For a subspace constrained gaussian to be well defined, the pre-
cision parameters must correspond to a positive definite matrix.
This however, is not automatically the case in the suggested algo-
rithm. By experimental verification we verified that even the top
eigenvector in the above scheme did not correspond to a positive
definite precision matrix. Motivated by this we consider instead
an SCGMM with an affine basis θ0 +

PD
k=1 λgkθk with an offset

θ0 corresponding to a positive definite covariance matrix. We use
θ0 = θ̄.

In summary the algorithm for basis selection becomes

1. Compute θ̄ and the related quantities µ̄, Σ̄, ψ̄, P̄, P̄1/2 and
P̄−1/2.

2. Transform the full covariance parameters θg =

(ψg
�,pg

�)
�

by the formula

T (θg) = θ1
g =

„
ψ1

g

p1
g

«

where„
ψ1

g

p1
g

«
=

P̄− 1
2 (ψg − Pgµ̄)

vec(P̄−1/2PgP̄
−1/2)

!
. (19)

3. Compute the mean, µθ , and the covariance, Σθ , of the
transformed full covariance parameters. Then compute the
eigenvectors ek = (ψe

k,pe
k), k = 1, . . . , (d+1)(d+2)/2,

and associated eigenvalues ek.

4. Invert the transform T on the eigenvectors to compute the
SCGMM basis:

φ1 = θ0

φk+1 = T−1(ek) =

„
ψe2

k

pe2
k

«
,

where„
ψe2

k

pe2
k

«
=

P̄1/2(ψe
k + Pe

kP̄
1/2µ̄)

vec
“
P̄1/2Pe

kP̄
1/2

” !
.

2.4.1. Feature Transform Interpretation

An interesting property of the model transform for the gaussians
given by (19) is that it corresponds to the data transform xt →
Σ̄−1/2(xt − µ̄). This transform normalizes the data to have zero
mean and unit covariance. Such a normalization is a good method
to avoid many numerical problems. If we normalize the data in
this way then steps 2 and 4 in the above procedure becomes un-
necessary!
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3. INITIALIZING SCGMM COEFFICIENTS

The value of λg minimizing the Frobenius norm ‖θg − λgΦ‖Hθ̄

is given by
λg = (Φ�Hθ̄Φ)−1Φ�Hθ̄θg,

where Φ is the SCGMM basis matrix consisting of the rows φk.
Let E be the matrix consisting of the rows ek = T (φk), k =
1, . . . , D. The coefficients λg can then be efficiently computed by
the formula

λg = (E�E)−1E�T (θg). (20)

However minimizing the Frobenius norm may lead to an approxi-
mate model θ̃g =

PD
k=1 λgkφk for which the corresponding pre-

cision matrix is not positive definite. Such a model would not cor-
respond to a well defined distribution, and so any such value of
λg must be discarded. We propose two “back-off” methods to
find alternative values of λg that are guaranteed to be good. The
first method is to only project onto the first basis element, whose
precision is the inverse of the total covariance and as such is posi-
tive definite (unless the data is very sparse or degenerate). As this
first method is somewhat crude, we also propose using a method
known as Projection Onto Convex Sets (POCS). The POCS al-
gorithm is described in the appendix of [4] and consists of al-
ternatingly projecting onto S = {P : P =

PD
k=1 λkφk} and

Pt = {P : P ≥ tI} for some chosen fixed value t > 0. Project-
ing onto Pt is a simple matter of changing all eigenvalues below
t to t. Since this algorithm may in general converge slowly we
backed off to the first method if after a small modest number of
initial iterations the method did not yield an element in S ∩ P0.

Initializing λg like this works reasonably well for large values
of D (D � d) as the initial estimate given by 20 would then yield
a θ̃g that is close to θg . However for smaller values of D the
method should only be considered as a technique to initialize λg

to yield a positive definite precision. But, as the techniques for
training λg described in [1, 4] converges quite fast, this is not a
serious problem.

4. EXPERIMENTS

The SCGMM basis initialisation introduced in [1, 4] was quite
circuitous and required an initial Subspace Precision And Mean
(SPAM) model. The method proposed in section 3 has the advan-
tage that it does not require a SPAM model at all and is essentially
no more complicated than initializing a SPAM model. To measure
the power of the SCGMM initialization scheme we computed the
WER for: 1) The initial SCGMM model, 2) λg coefficients re-
trained by maximum likelihood and 3) SCGMM coefficients and
basis elements retrained by maximum likelihood.

Neither of the three models above saw any training data, and
maximum likelihood training was done against statistics inferred
from the baseline full covariance model. The experiments used
the same IBM internal training and test corpora that [1, 4] reported
results on. The baseline 40 dimensional 10,000 component full
and diagonal covariance acoustic models have error rates that are
respectively 1.23% and 2.28%. These acoustic models are sub-
stantially better than the comparable acoustic models reported on
in [1, 4]. We can see in Table 1 how the baseline systems compare
to SCGMM models of various basis sizes.

For D = 80 the fully trained SCGMM model gives a word
error rate of 1.68% and substantially outperforms the diagonal co-
variance SCGMM model which has a comparable number of free

Basis size ML retrained parameters
D none λg λg and basis
10 79.11% 13.87% 5.17%
20 21.79% 4.23% 2.96%
40 9.63% 2.26% 2.08%
80 5.41% 1.73% 1.68%
160 2.40% 1.44% 1.43%
320 1.61% 1.34% 1.32%
640 1.31% 1.28% 1.26

Table 1. Word Error rates for various types of SCGMM models

parameters. Also, the comparable SCGMM system that only re-
trained the SCGMM coefficients yields a word error rate compa-
rable to the fully trained SCGMM model for all D > 40. For
D = 640 no training at all appears to be necessary!

5. CONCLUSION

We have proposed a simple method to initialize SCGMM basis
and coefficient parameters. The method is simple to implement
and is in the example d = 40 experiment by itself sufficient for
D = 640 (D � d). For all values D ≥ 80 the basis training itself
may be avoided altogether with only a small loss in performance.
And only the SCGMM coefficients need to be trained in this case.
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