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ABSTRACT

Clearly, the linear discriminant classifier is not robust enough to

cope with most real-world data classification problems. Kernel

Fisher Discriminant Analysis (KFDA) tries to increase the

expressiveness of the discriminant based on the high order

statistics of the data set. In this paper, we propose the

GMM-based KFDA with the Bhattacharyya kernel to obtain a

transformation, or called a speaker eigenspace, based on which

the transformed MFCC features are more discriminative for

speaker recognition. In our approach, the eigenspace is directly

constructed from the complete GMM parameter set, rather than

the supervectors considering mean vectors only as the eigenvoice

approach. Moreover, FDA, which is believed to be more 

appropriate for classification accuracy than Principal Component 

Analysis (PCA), is applied for eigenspace construction. The

speaker identification experiments show that the new features

outperform the MFCC features, in particular when the amount of

enrollment data for each speaker is very small.

1. INTRODUCTION

Speech recognition and speaker recognition are two different

things. The objective in speech recognition is to minimize the

inter-speaker variation while maximizing the intra-speaker

variation among acoustic units, but vice versa in speaker

recognition. Therefore, these two tasks should better use 

different signal traits as input. However, the most widespread

feature parameters used to date in both tasks are Mel-Frequency

Cepstral Coefficient (MFCC) features, which were originally

designed to fulfill the demand of speech recognition. Though the

MFCC-based Gaussian Mixture Model (GMM) [1] has been 

applied to speaker recognition in recent years, this approach

performs well only when a large amount of enrollment data for 

each client speaker is available. In other words, in the training

phase, the distribution of MFCC features from each client

speaker should be wide enough to cover all possible 

pronunciations, in particular when the speaker recognition is

conducted under the text-independent mode. In theory, speaker

characteristics should be invariant to the size of enrollment data 

and different pronunciations of the same speaker. It is crucial to 

develop more reliable features that magnify the inter-speaker

variation while reducing the intra-speaker variation for speaker

recognition.

Fisher Discriminant Analysis (FDA) [2] has been applied to

feature transformation in many pattern classification problems.

This technique is used to seek directions that maximize the

between-class scatter while minimizing the within-class scatter.

However, for most real-world data (e.g., speech frames) the

linear discriminant is not complex enough. Therefore, Kernel

Fisher Discriminant Analysis (KFDA) [3] tries to increase the

expressiveness of the discriminant based on the high order

statistics of the data set. 

In this paper, we want to find a speaker space that can better

discriminate the speakers from each other. We propose the

GMM-based KFDA with the Bhattacharyya kernel (BKFDA) to 

obtain a transformation, or called a speaker eigenspace, based on 

which the transformed MFCC features are more discriminative

for speaker recognition. The rest of this paper is organized as

follows: FDA and KFDA are briefly introduced in Section 2. The

GMM-based BKFDA is presented in Section 3. Then, the

application of GMM-based BKFDA to speaker identification is 

described in Section 4. Finally, the experimental results are

discussed in Section 5, and concluding remarks are made in

Section 6. 

2. FISHER DISCRIMINANT ANALYSIS WITH 

KERNELS

2.1. Fisher Discriminant Analysis (FDA)

Suppose that there are C classes and each class i has ni

d-dimensional data samples, . We want to find a 

linear transformation matrix W for the original data samples

such that the following Fisher’s criterion function J(W) is 

maximized,
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where Sb and Sw are, respectively, the between-class and the

within-class scatter matrices defined as follows,
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m and mi are, respectively, the overall sample mean vector and

the sample mean vector of the ith class computed by,
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where n=n1+n2+…+nC. The column vectors of an optimal W

maximizing J(W) are the generalized eigenvectors of Sb and Sw

(or the eigenvectors of Sw
-1Sb if Sw is nonsingular) corresponding

to the largest K eigenvalues (K min{C-1,d}).

2.2. Kernel Fisher Discriminant Analysis (KFDA)

Let be a nonlinear mapping from the input feature space Rd

into the implicit higher dimensional (maybe infinite) feature

space F. Then, we can find Fisher’s discriminant in F by

maximizing
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where w is a column vector of W in F, and  and  are

the between-class and the within-class scatter matrices in F, i.e.,

bS wS
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Usually, it is impossible to directly compute (x). We can

introduce a kernel function k(x,y)=( (x) (y)), which is the

inner product of two vectors (x) and (y) in F, to solve the

maximization problem. The function k( ) must be symmetric

positive and obey the Mercer’s condition [4]. In this way,

hopefully, the data, which is not linearly separable in the input

space Rd, can be linearly separable in the space F.

From the theory of reproducing kernels, we know that any

solution must lie in the span of all data samples in F, i.e.,Fw
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Let , we can find Fisher’s discriminant in F

by maximizing
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where  is an n 1 vector with ,

and  is an n 1 vector with ,
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i
is an ni ni

identity matrix, and 1n
i
 is an ni ni matrix with all entries equal to

1/ni. This maximization problem can be solved (analogous to the

prime problem in the input space as defined in Eq. (1)) by

finding the leading eigenvectors of N-1M. The projection of a 

new pattern x onto w is given by
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There are several implementation issues. First, N is obvious 

a singular matrix because we are estimating an n dimensional

covariance structure from n data samples. In order to make N a

positive matrix and at the same time preserve its eigenvalues, we

can simply add a small constant to its diagonal components,

i.e., we use N = N+ I to replace N in Eq. (11) [3]. Second, N

and M are both of size n n, which in practice can be very big.

We need to solve an n n eigen-decomposition problem, which

might be intractable for large n. One possible solution is the

sampling scheme, i.e., to restrict w to lie in a subspace spanned

by l examples instead of all training samples in F [5],
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where l<< n. The examples zj, j = 1,…,l, could either be a subset

of data samples or be estimated by some clustering algorithms.

3. GMM-BASED BHATTACHARYYA KFDA

Since the GMM is a very good representation of the training

samples, its model parameters in fact fit the requirement of zj in

Eq. (15) very well. Suppose that each class GMM has R mixture

components, , the training samples of the ith class, can be

represented by G , the ith class GMM.

 is the rth component of the ith class GMM, and 

,  and are, respectively, the mixture weight, the

mean vector, and the covariance matrix associated with . The

basic idea here is that all mixture components of a GMM are 

regarded as representative examples of the corresponding class. 

Therefore, the GMM-based KFDA is derived as follows,
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i) is , the mixture

weight associated with . We let the vector w lie in the span of 

C R mixture components of GMMs in F, i.e.,
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Then, we can apply the Bhattacharyya kernel [6] in computing

the inner product of (gr
i) and (gs

j) in F. We define the kernel

function as k(gr
i, gs

j)=exp(- ||gr
i gs

j||2), and apply the

Bhattacharyya distance [2] in computing ||gr
i gs

j||, i.e.,
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Therefore, we term the proposed approach as the GMM-based

Bhattacharyya KFDA (BKFDA).
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4. APPLICATION TO SPEAKER RECOGNITION

4.1. Eigenspace Construction

Suppose that there are C training speakers (classes) and each

speaker has his/her well-trained GMM. In the eigenvoice

approach [7], the mean vectors of each speaker’s GMM are

concatenated to form a supervector first. A speaker eigenspace is

then constructed by performing PCA on these C supervectors. 

Considering the fact that PCA seeks directions that are efficient

for representation whereas FDA seeks directions that are

efficient for discrimination [8], for the speaker recognition task,

it is believed that FDA is more appropriate for classification

accuracy than PCA. However, it is impossible to calculate the

within-class scatter matrix when FDA is performed on the above

supervectors because each speaker (class) only has one

supervector. The proposed GMM-based BKFDA is more

appropriate for eigenspace construction than the standard

eigenvoice approach because the eigenspace is directly

constructed from the complete GMM parameter set rather than

the supervectors considering mean vectors only.

We first pool all training speakers’ data to train a Universal

Background Model (UBM) [9] with R mixture components gr ,

r=1,…,R ,  i . e . , CXX1 ),...,1,,,(~ RrpG rrr µX .

Since the UBM is a large GMM covering the distribution of all

possible pronunciations from all speakers, we can let the vector

wk lie in the span of R mixture components of UBM in F, i.e.,

.)(
1

R

r
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We then apply the Bayesian adaptation [10] to train the speaker

GMMs from the UBM using the speaker specific training data.

Since all speaker GMMs are adapted from the UBM, they have

similar intra-speaker variation structures. The situation fits the 

requirement of making good use of FDA that all classes have 

similar within-class scatter structures. Let ,

same as Eq.(11), we need to maximize J(

RRkk
T

k 11 ],,[

k). Here, the matrices

M and N are defined as,
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ip

i are diagonal matrices of

size R×R whose rth diagonal elements are pr and pr
i, respectively,

and is a R×1 vector whose rth element is pr
i. Again, the

maximization problem can be solved by finding the leading

eigenvectors of N-1M, as described in Section 2.2.

4.2. Feature Transformation

In the eigenvoice [7] or eigen-MLLR [11] approaches, the 

coordinate in the speaker eigenspace can be found and used to

construct a model for a speaker based on a small amount of 

enrollment data. In the extreme case, the coordinate with respect

to each speech frame can be obtained and regarded as a new

feature (i.e., the so-called EMC features in [12]). The similar

idea can be applied here. However, we can not obtain the

projection of the feature vector x by computing xw kky ,

Kk ,...,1 , because the speaker eigenspace is constructed by

models instead of features. To apply the Bhattacharyya kernel for

feature transformation, we need to extend the feature vector x to

a Gaussian . We can use the adaptation trick in the

extreme case, which adapts a reference model from UBM with a 

single feature vector. Because UBM represents a distribution

over a large space, a single feature vector will be close to only 

few mixture components of UBM. The likelihood values can be

approximated well using only few best scoring mixture 

components [9]. For simplicity purpose, we choose the best 

mixture component for a feature vector x in adaptation, set the

relevance factors to heavy emphasis this feature vector in the

Maximum a Posteriori (MAP) formulation [9], and keep the

covariance matrix unchanged, i.e., , where r* is 

the mixture component that has the maximal likelihood with

respect to x. Therefore, the projection of a feature vector x can

be expressed as the projection of g(x) onto w
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In this way, we can obtain a K-dimensional new feature vector yT

=[y1,…,yK] from a feature vector x using the GMM-based 

BKFDA. If C training speakers are available for eigenspace

construction, K must be less or equal to C-1 because N-1M has at 

most C-1 eigenvectors. However, since the feature vector

dimension d is usually much less than C, we can obtain at most d
rather than C-1 eigenvectors when applying FDA in eigenspace

construction. This is why FDA is widely used in reducing the

dimension of feature vectors. In the proposed GMM-based 

BKFDA approach, the dimension of the new feature vector can

be higher than that of the original feature vector.

4.3. GMM-based Speaker Identification

In this study, we apply the GMM-based BKFDA in

GMM-based speaker identification. In the training phase, the

MFCC features of each client speaker’s enrollment data are first 

transformed into the BKFDA features, and then used to train the

speaker GMM. In the test phase, the BKFDA features

transformed from the MFCC features of test utterances are used 

for speaker identification evaluation.

5. EXPERIMENTS

5.1. Experimental Setup 

The NIST 2001 cellular speaker recognition evaluation database

[13] was used in the following experiments. We divided this

database (including the development data and the evaluation data)

into two subsets. The first subset consists of 90 female and 84

male speakers. It was used to train the UBM first. Then, the 174

speaker GMMs were adapted from the UBM using the speaker

specific training data, respectively. Finally, the 174 speaker

GMMs were applied in eigenspace construction. The second

subset consisting of the remaining 22 females and 28 males was 

used for speaker identification evaluation. Each speaker has 

about 2 minutes of training data and 10 test segments on average.
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All the speech data were processed by a Voice Activity Detector

(VAD) to discard silence-noise frames [14]. After passing VAD,

about 4.22 hours of speech from 174 speakers in the first subset 

were used to train the UBM with 1024 mixture components, the

speaker GMMs and the eigenspace. In the second subset, the

training data of each client speaker lie within the range of 

90~122 seconds and the duration of each test segment is 6~45

seconds. There are 598 test segments in total. 

For both subsets, the speech was sampled at 8 kHz. Spectral

analysis was applied to a 32 ms frame of speech waveform every

10 ms. For each speech frame, 12 MFCCs along with the first 

time derivatives were combined together to form a

24-dimensional feature vector.

5.2. Experimental Results and Discussions

For performance comparison, a baseline system built upon

GMMs and MFCC features was evaluated first. Extensive

experiments with respect to the number of Gaussian mixture

components used in a GMM and the amount of enrollment data

used for training a GMM have been run. For the sparse

enrollment data cases ( 15 seconds), GMMs with 2, 4, 8, and

16 mixture components were evaluated, while for the abundant

enrollment data cases (>15 seconds), GMMs with 8, 16, 32, and

64 mixture components were evaluated. The accuracies

associated with the empirically most accurate configuration (i.e.,

the most appropriate mixture number with respect to the amount

of enrollment data) are summarized in the first column of Table 1, 

where “3 sec” means only the first 3 seconds of the training 

utterance were used for training the speaker GMM, while “All”

means the complete training utterance was used. The remaining

columns show the results of the BKFDA features with different

K (i.e., the feature vector dimension). It is obvious that the

performance of our approach is better than the conventional

MFCC-based GMMs, in particular when the amount of 

enrollment data for each client speaker is very small (<9

seconds). When the enrollment data from a client speaker are

relatively sufficient, say 60 seconds, our approach still performs

better than the conventional MFCC-based GMM approach,

though the improvement is not significant. The experimental

results show that by using our approach, the amount of 

enrollment speech for a client speaker can be reduced.

6. CONCLUSIONS

In this paper, we want to find a speaker space that can better

discriminate the speakers from each other. We propose the

GMM-based KFDA with the Bhattacharyya kernel to obtain a

transformation, or called a speaker eigenspace, based on which

the transformed MFCC features are more discriminative for

speaker recognition. The speaker identification experiments

show that the BKFDA features outperform the MFCC features,

in particular when the amount of enrollment data for each

speaker is very small.

Enrollment

data

24-dim

MFCC

12-dim

BKFDA

24-dim

BKFDA

40-dim

BKFDA

50-dim

BKFDA

60-dim

BKFDA

70-dim

BKFDA

3 sec 31.44 4 40.64 2 40.13 2 39.97 4 39.13 8 38.13 8 35.79 8

6 sec 46.15 4 51.84 8 52.68 8 53.68 16 49.50 8 47.66 8 49.83 8

9 sec 56.86 8 53.68 8 58.03 16 59.53 8 59.03 16 59.20 8 58.03 16

15sec 62.88 8 61.04 16 65.39 16 66.56 16 65.89 16 66.05 16 65.55 8

30sec 67.22 16 63.55 64 68.56 16 71.74 32 72.07 32 72.41 32 71.91 32

45sec 69.40 32 66.89 32 71.41 64 73.58 32 73.75 32 73.24 32 72.41 64

60sec 72.58 32 67.73 64 73.08 32 74.75 16 74.58 64 74.75 32 74.75 16

ALL 73.91 64 70.40 64 74.58 32 75.08 64 75.59 64 75.08 64 75.59 64

Table 1: Speaker identification accuracy (%) for MFCC-based GMMs and BKFDA-based GMMs.
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