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ABSTRACT

We show how the factor analysis model for speaker veri-
fication can be successfully implemented using some fast
approximations which result in minor degradations in ac-
curacy and open up the possibility of training the model
on very large databases such as the union of all of the
Switchboard corpora. We tested our algorithms on the NIST
1999 evaluation set (carbon data as well as electret). Using
warped cepstral features we obtained equal error rates of
about 6.3% and minimum detection costs of about 0.022.

1. INTRODUCTION

Factor analysis of speaker and channel effects in large cor-
pora such as the Switchboard databases has led to the devel-
opment of an effective method of compensating for inter-
session variability in speaker verification [1]. However the
computational requirements of this approach make it diffi-
cult to experiment with so we have found it necessary to
develop some fast approximations for training and testing
the factor analysis model.

Although it has appealing theoretical properties, joint
estimation of speaker and channel variability as in [1] in
training the factor analysis model is impractical on a large
scale. In this paper we will present a simplified training
procedure in which speaker and channel effects are decou-
pled. This is based on the assumption that for each training
speaker there are sufficiently many recordings that channel
effects can be averaged out by pooling statistics across all
of the recordings of the speaker. Our experience has been
that this simplified training procedure runs 2–3 times as fast
as the exact procedure in [1] and performs just as well.

A more serious problem with the factor analysis model
is that evaluation of the Bayes factor used to make verifi-
cation decisions is computationally very expensive particu-
larly if there are large numbers of t-norm speakers. We have
implemented an approximation to this calculation which en-
ables the computation to be shared among t-norm speakers.
With 50 t-norm speakers and 11 hypothesized speakers per
test utterance, this approximation results in a 25 fold in-
crease in speed at a cost of a 5% (relative) degradation in

performance as measured by the NIST detection cost func-
tion.

2. SPEAKER AND CHANNEL FACTORS

We assume a fixed GMM structure containing a total of C
mixture components. Let F be the dimension of the acous-
tic feature vectors. Our basic assumption is that a speaker-
and channel-dependent supervector can be decomposed into
a sum of two supervectors, one of which depends on the
speaker and the other on the channel, and that speaker su-
pervectors and channel supervectors are both normally dis-
tributed. The dimensions of the covariance matrices of these
distributions are enormous (CF × CF ) so we begin by ex-
plaining briefly how these covariance matrices are modeled.

Let m denote the universal background supervector and
let M(s) be the speaker supervector for a speaker s. We
assume that, for a randomly chosen speaker s,

M (s) = m + vy(s) + dz(s) (1)

where d is diagonal, v is a rectangular matrix of low rank
and y(s) and z(s) are independent random vectors having
standard normal distributions. In other words, M(s) is as-
sumed to be normally distributed with mean m and covari-
ance matrix vv∗ +d2. The components of y(s) are speaker
factors. The speaker space is the affine space defined by
translating the range of vv∗ by m. If d = 0 then all speaker
supervectors are contained in the speaker space. We will use
the term Principal Components Analysis (PCA) to refer to
this case; in the general case (d �= 0) the term dz(s) serves
as a residual which compensates for the fact that it may not
be possible in practice to estimate v reliably [2]. (See Fig.
1).

In order to incorporate inter-session effects, suppose
we are given recordings h = 1, . . . , H(s) of a speaker s.
For each recording h, let Mh(s) denote the corresponding
speaker- and channel-dependent supervector. We assume
that the difference between Mh(s) and M(s) can be ac-
counted for by a vector of channel factors xh(s) having a
standard normal distribution. That is, we assume that there
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Fig. 1. In the PCA case, a speaker- and channel-dependent
supervector M can be written as a sum of two supervectors
one of which (indicated here by C) lies in the channel space
and the other (S) lies in the speaker space. In the general
case, speaker supervectors are assumed to be distributed in
the neigbourhood of the speaker space.

is a rectangular matrix u of low rank such that

M (s) = m + vy(s) + dz(s)
Mh(s) = M(s) + uxh(s)

}
(2)

for each recording h = 1, . . . , H(s).
Thus we are assuming that channel supervectors are

contained in a low-dimensional subspace of the supervec-
tor space, namely the range of uu∗, which we refer to as
the channel space. The assumption of low dimensionality
is clearly reasonable in the idealized case where all chan-
nels are linear and the acoustic features are cepstral coef-
ficients. An empirical justification is provided by the fact
that in all of our experiments with the factor analysis model
we have found that the that the eigenvalues of uu∗ drop off
exponentially (as do the eigenvalues of vv∗).

If RC is the number of channel factors and RS the num-
ber of speaker factors, the factor analysis model is specified
by a quintuple Λ of the form (m, u, v, d,Σ) where m is
CF × 1, u is CF × RC , v is CF × RS and d and Σ are
CF × CF diagonal matrices. To explain the role of Σ,
fix a mixture component c and let Σc be the corresponding
block of Σ. For each speaker s and recording h, let Mhc(s)
denote the subvector of Mh(s) corresponding to the given
mixture component. We assume that, for all speakers s and
recordings h, observations drawn from mixture component
c are distributed with mean Mhc(s) and covariance matrix
Σc.

The role of the hyperparameters m, v and d is to model
inter-speaker variability but if we are given enrollment data
for a target speaker s we can use speaker-dependent ver-
sions of these hyperparameters, namely m(s), v(s) and
d(s), to model the posterior distribution of the speaker’s su-
pervector M(s) instead. This leads to a speaker-dependent
version of the factor analysis model where we assume that,

for a given speaker s and recording h,

M(s) = m(s) + v(s)y(s) + d(s)z(s)
Mh(s) = M(s) + uxh(s).

}
(3)

Set Λ(s) = (m(s), u, v(s), d(s),Σ). (We continue to treat
u and Σ as speaker-independent because channel effects
should not vary from one speaker to another.)

3. BUILDING A SPEAKER VERIFICATION
SYSTEM

In order to build a speaker verification system using the fac-
tor analysis model we proceed as follows [1]:

1. Train the UBM The role of the universal background
model is to extract the usual first and second order
statistics from each utterance just as in the Baum-
Welch algorithm. These are sufficient statistics for
the factor analysis model.

2. Train a PCA model That is, estimate speaker-
independent hyperparameters Λ from a large
database in which each speaker is recorded in
multiple sessions.

3. Adapt this to the target speaker population That
is, given a target speaker population (as in one of
the NIST evaluations), adapt the hyperparameters
(m, v, d) to fit this population. (Adaptation is nec-
essary because training a factor analysis model on a
target speaker population is not possible if there is
only one recording per speaker.) For computational
reasons d is introduced in this step rather than in step
2.

4. Enroll the target speakers That is, estimate the
speaker-dependent hyperparameters Λ(s) for a given
target speaker s by calculating the posterior dis-
tribution of the speaker’s supervector M(s) us-
ing the speaker’s enrollment data and the speaker-
independent hyperparameters.

5. Test That is, for a given test utterance X and hypoth-
esized speaker s, test the the null hypothesis (that the
test speaker is somebody other than s) against the al-
ternative hypothesis (that the test speaker is s) using
the log likelihood ratio statistic

log
PΛ(s)(X )
PΛ(X )

(4)

where the numerator is the (factor analysis) likeli-
hood of the test utterance calculated with the speaker-
dependent hyperparameter set Λ(s) (step 4) and the
denominator is the likelihood calculated with the
speaker independent hyperparameter set Λ (step 3).
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Of these, steps 2 and 5 are by far the most computationally
expensive.

3.1. Simplifying the training procedure

Note that m can be estimated by Baum-Welch training and,
in the case of a PCA model, if u = 0 then the columns of v
can be interpreted as the eigenvoices of the training speaker
population. Thus v can be estimated by eigenvoice train-
ing or by cluster adaptive training. Note also that whereas
the basic assumption in eigenvoice modeling is that speaker-
supervectors are normally distributed with mean m and co-
variance vv∗, we are also assuming that, for an arbitrary
speaker s, speaker- and channel-dependent supervectors are
normally distributed with mean M (s) and covariance uu∗.
Thus we can estimate u by the same methods as v.

To be more specific we have to define some statistics.
For each recording h of a speaker s and for each mixture
component c, let Nhc(s) be the total number of observations
for the given mixture component. For a supervector M ,
define centralized first and second order statistics by setting

Fhc(s, Mc) =
∑

t

(Xt − Mc)

Shc(s, Mc) = diag

(∑
t

(Xt − Mc)(Xt − Mc)∗
)

where the sum extends over all observations Xt aligned
with the given mixture component, Mc is the cth block of
M , and diag () sets off-diagonal entries to 0. Let Nh(s)
be the CF ×CF diagonal matrix whose diagonal blocks are
Nhc(s)I (for c = 1, . . . , C) where I is the F × F identity
matrix. Let F h(s, M ) be the CF × 1 vector obtained by
concatenating Fhc(s, Mc) (for c = 1, . . . , C). Similarly, let
Sh(s, M) be the CF×CF diagonal matrix whose diagonal
blocks are Shc(s, Mc) (for c = 1, . . . , C).

In order to estimate v using the algorithm in [2] we cen-
tralize the first and second order statistics using the UBM
supervector m, and for each training speaker we pool the
statistics over all of the recordings for the speaker. Thus the
input to the eigenvoice estimation algorithm is

H(s)∑
h=1

Nh(s),
H(s)∑
h=1

F h(s, m),
H(s)∑
h=1

Sh(s, m)

where s ranges over all of the training speakers and, for a
given speaker s, H(s) is the number of recordings of the
speaker.

In addition to producing an estimate of v, the eigen-
voice estimation algorithm in [2] also produces, for each
training speaker s, a point estimate of M(s) which we de-
note by M̂(s). In order to estimate the matrix u, we elimi-
nate speaker effects by centralizing the first and second or-
der statistics for each training speaker s using M̂ (s) and

present the eigenvoice estimation algorithm with the follow-
ing input:

Nh(s), F h(s, M̂ (s)), Sh(s, M̂(s)) (h = 1, . . . , H(s))

where s ranges over all of the training speakers.

3.2. Simplifying the verification decision

T-norm score normalization obviates the need to calculate
the denominator of (4) but requires evaluating the numerator
for all of the t-norm speakers in addition to a hypothesized
speaker s. It would be a straightforward matter to evaluate
the likelihood PΛ(s)(X ) if the values of the hidden variables
x1(s), y(s) and z(s) were given because we would then
be able to write down the speaker- and channel-dependent
supervector M1(s) in accordance with (2). (The subscript
1 here indicates that we are working with a single recording
i.e. h = 1 in (2).) Since the values of the hidden variables
are not given we have to evaluate the integral

∫
PΛ(s)(X |x1, y, z)N(x1, y, z|0, I)dx1dydz (5)

where N(·|0, I) is the standard Gaussian kernel. By argu-
ments similar to those used in demonstrating Proposition 2
in [2], the value of this integral can expressed in terms of
the inverse of the matrix L(s) defined by

L(s) = I + V ∗(s)Σ−1N 1(s)V (s)
where V (s) =

(
v(s) u d(s)

)
.

By taking advantage of the fact that d(s) is diagonal, the
calculation can be reduced to evaluating the Cholesky de-
composition of a matrix of dimension (RS + RC)× (RS +
RC) constructed from v(s) and u. (Recall that RC is the
rank of u and RS is the rank of v and of v(s).) But if the
number of speaker and channel factors is large the cost of
these Cholesky decompositions may be prohibitive, partic-
ularly if there are many t-norm speakers.

In [1] we dealt with this problem by reducing the rank
of v(s) by suppressing the minor eigenvalues of v(s)v∗(s).
The fact that Bayes factor scoring does not seem to be very
helpful with conventional GMM’s suggests that a more ex-
treme expedient might work, namely setting d(s) = 0 and
v(s) = 0. Since N 1(s) depends on X but not on s (be-
cause the sufficient statistics for the factor analysis model
are extracted using the UBM), it follows that in this case
L(s) is independent of s so all that is required is a single
Cholesky decomposition of an RC × RC matrix in order
to evaluate PΛ(s)(X ) for any speaker s including all of the
t-norm speakers.
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4. EXPERIMENTS

4.1. Databases and signal processing

We used NIST 1999 evaluation set in its entirety (carbon
data as well as electret) to test our algorithms. We used
Switchboard II, Phases 1 and 2 for training the factor anal-
ysis model (step 2 in Section 3), and we used the enroll-
ment data provided by NIST to train the UBM (step 1), to
adapt the PCA model (step 3) and to enroll the target speak-
ers (step 4). Since the 1999 evaluation data was drawn from
Switchboard II, Phase 3 this experimental setup ensures that
the NIST protocol is respected (although there is a geo-
graphical mismatch between the training and test speaker
populations [1]).

After excising silences, the female portion of the train-
ing set consisted of 230 hours of data (700 speakers, 8400
conversation sides) and the male portion consisted of 180
hours of data (625 speakers, 7400 conversation sides) —
about twice as much data as we used for our experiments on
the 1999 test set in [1].

Speech was sampled at 8 kHz and 12 liftered mel fre-
quency cepstral coefficients and the log energy were calcu-
lated at a frame rate of 10 ms using a 25 ms Hamming win-
dow. The acoustic feature vector consisted of these 13 pa-
rameters together with their first derivatives. Feature warp-
ing (Gaussianization) was applied as in [3].

4.2. Training and testing

For each gender we used a GMM having 2,048 Gaussians
as a UBM and we used 300 speaker factors and 100 channel
factors.

In testing, we used 50 t-norm speakers per test utter-
ance. In order to evaluate the likelihood ratio statistic (4)
we reduced the rank of v(s) from 300 to 100 for each target
speaker s. This is the exact decision rule referred to in the
third column of Table 1; the simplified decision rule consists
in setting d(s) and v(s) to zero as in Section 3.2.

4.3. Results

The results of our experiments on the female portion of the
1999 test set are summarized in Table 1. Line 1 gives the
benchmark result obtained by training with the maximum
likelihood and minimum divergence estimation algorithms
described in [1] (‘exact’ training) and the exact decision
rule.

Comparing Line 1 with Line 2 and Line 3 with Line 4
shows that simplified training has a minimal effect on both
the minimum detection cost (DCF) and the equal error rate
(EER). Comparing Line 1 with Line 3 and Line 2 with Line
4 shows that the simplified decision rule has a minimal ef-
fect on the DCF but there is a non-negligible degradation in

Training Decision Feature DCF EER
Algorithm Rule Warping

1 Exact Exact Yes 0.021 6.2%
2 Simplified Exact Yes 0.022 6.3%
3 Exact Simplified Yes 0.022 7.3%
4 Simplified Simplified Yes 0.023 7.1%

5 Simplified Exact No 0.029 8.4%
6 Simplified Simplified No 0.041 14.2%

Table 1. Results of speaker verification experiments on the
NIST 1999 evaluation set, female speakers. DCF denotes
the minimum value of the NIST detection cost function, EER
the equal error rate.

the EER.
Results on the male portion of the test set are similar.

Replicating the experiment in Line 2 gave a DCF of 0.020
an EER of 5.9% and replicating the experiment in Line 4
gave a DCF of 0.021 and an EER of 6.4%.

The results in Lines 5 and 6 were obtained without fea-
ture warping. Comparing them with the results in Lines 2
and 4 show that that feature warping is very effective. It
seems likely that the reason for this is that Gaussianization
reinforces the modeling assumptions in Section 2.

4.4. Conclusions

Our results on the 1999 test set are substantially better than
those reported in [1] thanks to doubling the amount of train-
ing data for the factor analysis model and to using Gaussian-
ized acoustic features. We found that the simplified training
procedure works as well as the exact training procedure and
achieves a 2–3 fold speed up but the simplified decision rule
is not as effective as the exact decision rule at least as mea-
sured by EER’s (although it does have the virtue of greatly
reducing the turn-around time for experiments).
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