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ABSTRACT

Model migration in speaker recognition is a task of convert-
ing parametrically-obsolete models to new structures and
configurations without the requirement to store the orig-
inal speech waveforms or feature vector sequences along
with the models. The need for model migration arises in
large-scale deployments of speaker recognition technology
in which the potential for legacy problems increases as the
evolving technology may require configuration changes thus
invalidating already existing user voice accounts. A migra-
tion may represent the only alternative to otherwise costly
user re-enrollment or waveform storage and, as a new re-
search problem, presents the challenge of developing algo-
rithms to minimize the loss in accuracy in the migrated
accounts. This paper reports on further enhancements of a
statistical migration technique based on Gaussian Mixture
Models, introduced previously. The present approach is
based on a stochastic synthesis of feature sequences from ob-
solete models that are subsequently used to create the new
models. Here, in addition to Gaussian means and priors, as
utilized in the previous contribution, also the covariances
are included resulting in significant performance gains in
the migrated models, compared to the mean-only method.
Overall, measured on the NIST 2003 cellular task, the de-
scribed algorithm achieves a model migration incurring a
loss in performance of 8-20% relative to a full re-enrollment
from waveforms, dependent on the type of mismatch be-
tween the obsolete and the new configuration. The inclu-
sion of the covariance information is shown to reduce the
loss of performance by a factor of 3-4 as compared to the
baseline mean-only migration technique.

1. INTRODUCTION

The task of model migration was introduced in [1] as a
problem arising in field deployments with an ever growing
number of voice-enabled user accounts. We expect that in
the still dynamically evolving area of speaker recognition,
legacy issues in the model maintenance will occur, as the
average life span of a user account is likely to last longer
than an innovation cycle of the underlying authentication
technology. In other words, for a voice-enabled account in-
cluding the user’s voice model representation, the particular
implemented algorithm that created the model may change
one or several times during the overall period of using the
account. Since the parametric structure of the user models

is dictated by the underlying algorithms used to produce
them, significant incompatibilities can be introduced into
existing large-scale databases of users. Consequently, algo-
rithmic or data-related changes rendering existing accounts
obsolete put infrastructure providers before new problems
and decisions on how to address them. Among the few pos-
sibilities are: 1) have users actively re-enroll into the new
system, 2) automatically re-enroll users from stored origi-
nal waveform, 3) keep multiple system versions on-line to
support obsolete as well as new accounts, 4) automatically
convert obsolete models to the new configuration. As dis-
cussed in [1], each solution builds on different assumptions
and has different degrees of practicability. The process 4) is
referred to as model migration and builds on the assumption
that the obsolete model is the sole information available for
the account, i.e. that no original waveform exists. The ob-
vious merit of a well-performing model migration method
is the fact that it may be the only alternative to requiring
all users to re-enroll into the system.

Building on [1] we focus on the common scenario involv-
ing a conversion between two GMM models in a UBM-MAP
framework [2], with different GMM sizes and a different
composition of the background data, however sharing a
common feature space. Throughout the paper the UBM
structure from which a speaker model is created via the
MAP adaptation is referred to as substrate. With a change
of the substrate every user model (rendered obsolete) needs
to be migrated to the new substrate.

The rest of the paper describes the new migration al-
gorithm based on a stochastic synthesis with inclusion of
Gaussian covariances as an enhancement of the baseline
mean-only migration formula. Experiments carried out on
the cellular task of the 2003 NIST Speaker Recognition
Evaluation using the new algorithm are presented and sev-
eral variants for types of covariance information as well as
mismatch configurations are studied.

2. MODEL MIGRATION

Considering user models having a GMM structure with
mean parameters adapted via the Maximum A-Posteriori
(MAP) method from a Universal Background Model (UBM)
[2], we proposed a statistical method [1] to migrate the user
mean parameters from an obsolete model, M0, that were
adapted from an obsolete substrate, W0, of size N0 Gaus-
sians to a new user model M1 consistent with a new sub-
strate, W1, of size N1. Both substrate UBMs are assumed in
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a feature space identical up to a linear transform, however
were composed from different data sets, and, in general,
N0 �= N1.

A MAP-based algorithm for migrating the mean parame-
ters of the obsolete system to a new substrate in [1] involves
computation of a posterior probability of Gaussian i of the
new UBM accounting for the obsolete sample mean µ̂j

γij = Pr(i|µ̂0j) (1)

=
π1ip1i(µ̂0j)∑N1

k=1
π1kp1k(µ̂0j)

1 ≤ i ≤ N1, 1 ≤ j ≤ N0

with π the UBM component weights, p(·) the UBM Gaus-
sian density function, and subscripts 0, 1 denoting the ob-
solete and the new system, respectively. This is followed by
a single iteration of MAP estimation to obtain a new mean

µ1i = αiµ̂1i + (1 − αi)m1i (2)

αi =

N0∑
k=1

nkγik/

(
N0∑
k=1

nkγik + r

)

µ̂1i =

N0∑
k=1

nkγikµ̂0k/

N0∑
k=1

nkγik

1 ≤ i ≤ N1

where m1i denotes the i-th mean vector of the new UBM,
nk the original vector count in the k-th obsolete Gaussian
(which is either stored in the obsolete model or can be ap-
proximated via the π parameter), and r the adaptation rel-
evance factor [2].

From a different viewpoint, the above algorithm can be
interpreted as providing a new MAP estimate based on a
synthesized feature vector sequence comprised of the indi-
vidual obsolete mean vectors in their original proportional
representation, distributed via γij into Gaussians of the new
substrate W1.

A drawback of the above migration formula is that the
covariance information, be it Σ0i of the obsolete UBM Gaus-
sian i or the sample covariance Σ̂0i of the speaker data, is
not utilized. Therefore we adopt the synthesis interpreta-
tion of (3) and generalize it to a 0-th order stochastic process
with a Gaussian output distribution to perform the migra-
tion task. This stochastic synthesis process is formulated
as follows: to create a migrated speaker model a sequence
of feature vectors is used as input to the appropriate en-
rollment procedure in the new system. The synthesized
sequence

X = {X1, ..., XN0}
is composed of blocks

Xi = {xit}ni
1 ,

whereby each block is generated by an i.i.d. stochastic pro-
cess with distribution parameters of the i-th obsolete Gaus-
sian. Let Y ∼ N (0, I) be a d-dimensional normal random
variable, then each block Xi is viewed as a sample of size
ni of a random variable Yi:

Yi = A−1
0 (Y Σ̂

1
2
0i + µ̂0i) (3)

where µ̂0i is the sample obsolete mean as used in (3), Σ̂0i

is the sample obsolete covariance of Gaussian i, and A0

accounts for any global linear feature-space transform ap-
plied in the obsolete system (e.g. the MLLT as described
in [3]). In mean-only MAP-adapted systems the speaker
sample covariance may not be available, therefore in our ex-
periments the effect of replacing Σ̂0i by the UBM (speaker-
independent) covariance Σ0i was also studied (see Section

3.). Note that this procedure with Σ̂0i = 0 is equivalent to
the mean-only migration formula (3).

The sequence X serves as input to the new system that
performs regular enrollment.

3. EXPERIMENTS

3.1. Database

The performance of the described method was evaluated us-
ing data from the cellular part of the Switchboard (SWB)
telephone corpus, as defined by NIST for the 1-speaker cel-
lular detection task in the 2003 Speaker Recognition Eval-
uations (SRE) [4]. The 2003 set consists of 356 speakers,
and a total of 37664 verification trials.

The 2001 cellular SRE, the 1996 SRE landline-quality
dataset and an internal cellular-quality data collection
served as the data for the estimation of two substrate mod-
els (UBMs) and score normalization via T-Norms.

3.2. System Setup

The data composition in the two substrate models was de-
signed to differ as follows [1]: while the 2001 SRE data were
used in both models, the “obsolete” substrate set included
also the 1996 SRE data set, and the “new” substrate model
included the internal data set as well as the SRE 1996 but
postprocessed by a GSM transcoder [3]. For experimen-
tal purposes substrate models with varying sizes between
256 and 2048 Gaussian components were created using the
techniques described in [3]. The two models each had a
different linear transform applied, which for the purpose of
model migration was compensated for as described in [1].

In the detection phase, log likelihood ratio scores are cal-
culated given each test utterance, target model and the
corresponding substrate model. Furthermore, the T-Norm
score normalization technique is applied. A total of 234
speakers from the 2001 cellular SRE served as T-Norm
speakers in both systems and are used in a gender-matched
fashion in the test. Note that in all migrated configuration
the T-Norm models undergo the same migration procedure
as the target models.

The system performance was measured at two operating
points, namely in terms of the Equal-Error Rate (EER) and
the minimum Detection Costs Function (DCF) as defined in
the evaluation plan [4]. Note that the DCF values reported
in this paper are scaled by 103.

3.3. Two Baselines

Migration results obtained using the stochastic synthesis
will be compared to the baseline mean-only migration tech-
nique of [1] and also to the ideal achievable performance
obtained by using the original waveform to recreate the
target models. Although this baseline is idealistic, as it

I - 634

➡ ➡



goes beyond our original assumption of waveform absence,
it provides a necessary performance reference point.

3.4. Results

Experiments were carried out on varying sizes of the sub-
strate (and consequently the target) models in both the
obsolete domain (i.e. size N0 of W0) and the new domain
(N1, W1).

Table 1 and Table 2 summarize results obtained with mi-
grating models from and to various sizes ranging between
256 and 2048 Gaussian components, for unnormalized and
T-normed systems, respectively. Each row in a table cor-
responds to a particular obsolete size N0 (or waveform in
case of the ideal baseline) with each corresponding column
showing performance in terms of the DCF and the EER
after a migration to its specific new substrate size N1. The
mean-only baseline (“Bsl”) and the full stochastic synthesis
(“New”) are labeled correspondingly.

Table 1. DCF/EER results for migrated systems
without T-Norm. The stochastic synthesis method
is labeled “New,” and “Ideal Bsl” refers to re-
enrollment from waveforms

Original Target size (Number of Gaussians N1)
Size (N0) 2048 1024 512 256

2048-Bsl 64.7/20.2 68.4/19.7 73.1/18.8 70.3/17.4
2048-New 47.9/12.2 48.6/12.3 51.7/12.5 55.3/12.6
Ideal Bsl 37.1/9.4 39.9/10.1 42.6/10.8 46.6/11.4

Table 2. DCF/EER results for migrated systems
with T-Norm. The stochastic synthesis method is
labeled “New.”

Original Target size (Number of Gaussians N1)
Size (N0) 2048 1024 512 256

2048-Bsl 47.2/12.5 44.6/12.0 46.1/12.4 46.4/12.3
2048-New 38.6/9.9 37.0/9.6 37.1/9.9 38.5/10.6
512-Bsl 75.8/20.4 58.0/15.7 45.2/12.2 50.1/13.8
512-New 60.2/15.8 46.1/12.7 36.0/9.9 41.4/10.8
Ideal Bsl 31.9/8.4 32.4/8.8 33.5/9.3 35.6/10.2

Besides the general migration performance trends in the
various size configuration already observed in [1], an im-
provement averaging 20% relative in reduction of the DCF
as well as the EER can be seen in the new stochastic syn-
thesis method including the covariance information. This
seems to hold consistently across the various conditions and
thus appears to apply independently of the model size and
the degree of mismatch in the migration. As can be ex-
pected, a migration from the larger 2048 to smaller sub-
strates tends to preserve more accuracy than the vice versa
case (from 512). Explained from the viewpoint of vector
quantization, smaller obsolete substrates relate to a coarser
quantization and consequently a greater unrecoverable loss
of information.

Figure 1. Migration example from a 2048- to a 256-
Gaussian system with T-Norm for the stochastic
synthesis including covariance information and its
mean-only baseline
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As compared to the ideal baseline, in the N0 = 2048 case,
the new migration algorithm causes a relative performance
degradation of 8-20% in DCF and 4-17% in EER, dependent
on target size N1, comparing to 30-50% in DCF and 20-50%
in EER incurred in the mean-only baseline. thus effectively
reducing the loss caused by the mean-only baseline by a
factor of about 3-4.

A corresponding DET plot for the T-Normed ideal, mean-
only migrated, and covariance-migrated system is shown in
Figure 1 indicating that the relative performance seems to
behave uniformly across the entire operating range.

Based on the above results it can be concluded that the
covariance information is highly relevant to the statisti-
cal migration procedure. As mentioned above, however,
in some systems (e.g. with mean-only MAP-adapted mod-
els) the original speaker covariance may not be available
as the covariance parameters were not adapted. To inves-
tigate the importance of speaker-specific covariance versus
speaker-independent covariance information replacing the
former, experiments with the Σ̂0i parameters replaced by
the UBM Σ0i parameters were carried out and the corre-
sponding results are summarized in Table 3. The replace-
ment causes a degradation of about 4-5% relative to the
speaker-dependent covariance case, which can be viewed
rather minor considering the relative improvement com-
pared to the mean-only case. Similarly, DET plots for both
covariance cases are shown in Figure 2.

4. CONCLUSIONS

The presented experimental results show that 1) statistical
model migration is a viable way of converting models, that
were rendered obsolete by system configuration changes, to
new models compatible with a new system, 2) the migration
process between UBM-GMM configurations benefits signif-
icantly from inclusion of the covariance information, which
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Figure 2. Migration from a 2048- to a 256- Gaus-
sian system using speaker-dependent and speaker-
independent covariance
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Table 3. DCF/EER results for stochastic synthesis
migration with original speaker covariance and with
a replacement by the speaker-independent UBM co-
variance

Mgr. 2048 → 256 Speaker-Σ UBM-Σ Mean-Only

Plain 55.3/12.6 56.2/13.3 70.3/17.4
w/T-Norm 38.5/10.6 40.0/11.1 46.4/12.3
Ideal Bsl. w/T-N. 35.6/10.2

was achieved by the described algorithm of synthesizing fea-
ture sequences according to mean and covariance parame-
ters of the obsolete model, and 3) useful covariance infor-
mation may be retrieved from both the speaker-dependent
as well as speaker-independent parameters.

Compared to an ideal baseline involving re-creation of
the speaker models from original waveforms, the described
method achieved a migration incurring a loss of 4-20% rel-
ative, dependent on the degree of mismatch and the UBM
size configuration. Across all configurations, the proposed
stochastic synthesis algorithm gained a 20% relative im-
provement over the method in [1], which corresponds to a
reduction of the abovementioned migration loss of perfor-
mance of factor 3-4.

As outlined in [1], the remaining inaccuracies due to
model migration can be addressed by subsequent adapta-
tion, specifically in the framework of Conversational Bio-
metrics [5, 6] in which a knowledge-based verification with
a subsequent acoustic adaptation is carried out on the mi-
grated model.

Major technical challenges still remain in systems defined
in different feature spaces and employing different classifier
types, such as a migration from a discriminative-classifier
operating in a space of LPCC features to a generative-
model classifier operating on MFCCs. A possible solution

path could lead via waveform synthesis from the source sys-
tem followed by an appropriate re-enrollment. Techniques
for such PCM synthesis from features (e.g. the MFCCs)
are known [7] and open a direction for further research in
speaker model migration.
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