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ABSTRACT

This paper addresses the problem of robust text-independent speaker
identification. A voting mechanism is proposed to combine prob-
abilities generated using Gaussian Mixture Models (GMMs). This
algorithm is evaluated on standard data sets and shown to improve
performance. This method is found to decrease error rate by up to
68.6% relative on KING database and 34.9% relative on SPIDRE.
An analysis is performed and a hypothesis is proposed as to why
this algorithm does not give as good an identification rate in certain
cases. A method of using voting along with the standard GMM
method is described which overcomes this limitation. This sec-
ond method is evaluated and found to decrease error rate by as
much as 45.67% relative on the SPIDRE databases. It is found
to give a substantial improvement over conventional GMMs in all
the experiments performed. Both the proposed algorithms achieve
increased accuracy with negligible increase in computational cost.

1. INTRODUCTION

Speaker recognition is the process of recognizing who is speaking
on the basis of information extracted from the speech signal. It has
a number of applications including verification of control access
permissions to services such as banking over the telephone, corpo-
rate database search and voice mail. Speaker identification is the
process of determining which registered speaker was the source
of a given utterance whereas speaker verification is the process of
accepting or rejecting the identity claim of a user based on speech
alone. A speaker recognition system is said to be text indepen-
dent if the registering and test voices are not restricted to speak a
particular word, phrase or sentence.

Various models have been applied to the task of text indepen-
dent speaker identification, such as Vector Codebooks [1], Ra-
dial Basis Functions [2], Auto Associative Neural Networks [3]
and Gaussian Mixture Models (GMMs) [4]. Of these, GMMs
have been the most successful, while still being computationally
not very expensive leading to the extensive use of GMM based
speaker recognition systems. This paper concentrates on improv-
ing the performance of a simple GMM based text independent
speaker identification system which involves almost no increase
in the computational cost.

The remainder of this paper is organized as follows. Section 2
describes the features used along with an explanation of the clas-
sical Gaussian Mixture Model as applied to speaker identification.
Section 3 describes the first scheme, a voting based method to im-
prove the performance of GMMs. Section 4 details the evaluation
setup used to compare the various methods. Section 5 gives the

results when voting is used. Section 6 analyzes why voting shows
a loss of performance in certain cases and presents a new method
to overcome the limitations of the voting based classifier. Section
7 gives the results of the evaluation of this combination method.
Section 8 has some of the conclusions made from the experiments
presented.

2. THE CLASSICAL GAUSSIAN MIXTURE MODEL

The features used in this paper for speaker recognition are Mel
Frequency Cepstral Coefficients (MFCCs) [5]. In the setup used,
the magnitude spectrum from a short frame is processed using a
Mel-scale filter-bank. The log energy filter outputs are then cosine
transformed to produce cepstral coefficients. The processing is
repeated every frame resulting in a series of feature vectors.

The use of GMMs for speaker recognition is described in [4].
A GMM is the weighed sum of M component densities given by
the equation,

p( �X|λ) =

M�
i=1

pibi(�x) (1)

Where �x is D dimensional speech feature vector, bi(�x), i=1....M
are component densities and pi,i=1....M are the mixture weights.
Each component density is a D dimensional Gaussian pdf of the
form,

bi(�x) =
1

(2π)D/2|Σi| 12
exp

�
−1

2
(�x − �µi)

′
Σ−1

i (�x − �µi)

�
(2)

with mean vector �µi and covariance matrix Σi. The mixture weights
are such that

�M
i=1 pi = 1. Each speaker is represented by a

GMM λi which is completely parameterized by its mixture weights,
means and covariance matrices collectively represented as,

λi = {pi, �ui, Σi} (3)

These GMMs are trained separately on each speaker’s enrollment
data using the Expectation Maximization (EM) algorithm [6]. For
computational ease the covariance matrices are constrained to be
diagonal.

In speaker identification, given a group of speakers S = {1, 2....M}
, the objective is to find the speaker model which has the maximum
a posteriori probability for a given test sequence,

Ŝ = arg max
1≤k≤M

p(λk) = arg max
1≤k≤M

p( �X|λk)p(λk)

p( �X)
(4)
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Assuming that all speakers are equally likely and that the observa-
tions are independent, and since p(x) is same for all speakers, this
simplifies to

Ŝ = arg max
1≤k≤M

p( �X|λk) = arg max
1≤k≤M

[prod(p(�xi|λk)] (5)

Thus each GMM outputs a probability for each frame, which is
multiplied across all the frames. The classifier makes a decision
based on these product posterior probabilities.

3. VOTING FOR SPEAKER IDENTIFICATION

An analysis of the kinds of mistakes made by the GMM based
system was performed. It was seen that in many cases, the correct
speaker had very low scores in only a few frames, and despite scor-
ing better than all other speakers in all other frames, was not se-
lected as a right speaker. These few frames could be noisy frames
or variant frames where the speaker model did not match prop-
erly. This phenomenon could also be due to non-optimal models.
The effect of these few frames is thought to be amplified because
the probabilities of each frame are multiplied to achieve the final
posterior probability, thus possibly giving a higher weight to some
frames which have a much lower score.

p( �X|λk) = [prod(p(�xi|λk)] (6)

for i=1,2...n, where n is the total number of frames.

Fig. 1.Dip in log probabilities for a single frame shown for
different speakers in a single utterance

An example of the log probabilities for such a frame, is shown
in Fig. 1. Many of the utterances which were recognized incor-
rectly using GMMs had at least five or six such frames. When
these few regions were identified and removed by hand many er-
rors made by the system were corrected. To avoid the influence
of a few bad frames causing wrong identification there is a need to
make the influence of the frames more uniform. So, a voting based
combination scheme is suggested, where each frame has a single
vote.

In the proposed voting algorithm, each frame is viewed as an
independent classifier. Using the GMM parameters each classifier
makes an independent decision as to who the speaker is. In the
case of classical GMMs the outputs of the frames are the proba-
bilities p(�xi|λ) which are then combined by multiplication. In the
proposed method the decisions of all the classifiers (frames) are
combined by voting. The difference is shown in Fig. 2. Thus in

Fig. 2.Recognition on a single frame with Classical GMM
and Voting, modified from [4]

the voting scheme, for each frame we find the most likely speaker
Ŝ for that frame by,

Ŝ = arg max
1≤k≤M

p(�xi|λk) (7)

Thus the frames together function as an ensemble classifier. In
an ensemble classifier each classifier is run and casts a “vote” as
to who the correct speaker is. The votes are then collated and
the speaker with the greatest number of votes becomes the final
classification. Pseudo code for the algorithm is shown below.

10 Initialize a counter for each speaker to 0
20 For each frame j (LOOP 1)
30 For each Speaker i (LOOP 2)
40 Evaluate

p( �xj |λi) =

M�
k=1

pkbk( �xj)

50 End For (LOOP 2)
60 Find the speaker v with maximum

probability for the frame j

v = arg max
1≤k≤M

p( �xj |λk)

70 Increment the counter for speaker v by one
80 End For (LOOP 1)
90 The speaker with the largest counter (i.e. largest

number of votes) is hypothesized as the
correct speaker.
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4. EXPERIMENTAL SETUP AND PARAMETERS

The voting scheme is evaluated similar to [4].The only difference
is that the results of the baseline were improved using larger frames
than in [4] and the shift between segments is 40 frames.The data-
bases used were KING[7] and SPIDRE[8]. The SPIDRE I and II
databases were part of various NIST speaker recognition and track-
ing evaluations.The length of training was either 30sec or 60sec. In
KING there are 10 sessions per speaker. One fourth of the training
data vectors were taken from each of the first four files. In SPIDRE
there are 4 conversations per speaker. Half the training data vectors
were taken from the first conversation and half from the second
conversation. All the remaining data vectors were used for testing
in both cases. Thus testing involved about 200 sec in SPIDRE and
50 sec in KING split as described below, resulting in atleast 590
and 125 test cases per speaker, so that the results are statistically
significant. In the experiments on SPIDRE and KING, 32 gaus-
sians per speaker was found to be optimal, and hence these values
was used for all experiments. The test speech was processed by the
front end using frames of 30msec length, with 124 frames per sec-
ond to produce a sequence of MFCC feature vectors {x1, x2...xt}.
The sequence of feature vectors was divided into overlapping seg-
ments of T feature vectors similar to [4]

Segment1� �� �
�x1, �x2....... �xT−1, �xT , �xT+1....

�x40,

Segment2� �� �
�x41, �x42..... �xT+39, �xT+40, �xT+41....

A test segment of 5 sec corresponds to T = 620 feature vectors.
Each segment of T feature vectors is treated as a separate test ut-
terance. The error rate is computed as:

% error rate (ER) =

number of incorrectly identified segments
total number of segments

∗ 100

5. EVALUATION OF THE VOTING SCHEME

The voting method was first evaluated on a set of 10 speakers from
the KING [7] database and results for a few different testing and
training lengths, are summarized in Table.1. It was also evaluated
on 44 speakers from SPIDRE I and II databases as shown in Ta-
ble.2. The method was then evaluated on 48 speakers in the King
database as shown in Table.3.

Train Test Classical Voting %Improvement
(sec) (sec) GMMs(%ER) (%ER) with Voting
30 5 2.36 1.94 17.80
30 6 2.02 1.02 49.50
30 7 1.56 0.56 64.10
30 10 7.23 2.27 68.60

Table. 1.Error Rate on KING with 10 Speakers
Train Test Classical Voting %Improvement
(sec) (sec) GMMs(%ER) (%ER) with Voting
30 5 13.93 11.37 18.38
30 10 11.66 9.14 10.94
60 5 4.99 3.72 25.45
60 10 3.35 2.128 34.9
Table. 2.Error Rate on SPIDRE with 44 Speakers

6. PROS AND CONS OF THE PROPOSED METHOD

The voting scheme is found to work especially well in cases where,

• The signal is subjected to burst noise - a few frames are bad
but the rest are reliable such as in VOIP communication.
Some packets may be lost during transmission leading to
certain frames being unreliable.

• There are only a few speakers

• Very few data vectors are available for testing and training

Thus the method has many applications involving authentication
of computer users using voice over a wireless or wired IP network.

Train Test Classical Voting %Improvement
(sec) (sec) GMMs(%ER) (%ER) with Voting
60 5 9.03 14.31 -58.47
60 10 6.97 10.39 -49.06

Table. 3.Error Rate on KING with 48 Speakers

Thus, using only the probabilities of the classical GMM we can
extract two types of information

• Probability of the utterance given a model using multiplica-
tion

• Probable source of each frame and hence the entire utter-
ance, using voting

One disadvantage of this method is apparent from the results
in Table.3. Fig 3. shows the number of votes per speaker in two
experiments – one with 11 speakers and the other with 48 speak-
ers – in a series of experiments where the corerct speaker is held
constant. It is seen that the method is not as effective when there
are a large number of speakers on KING database. When the num-
ber of speakers increase, the peak in the voting histogram becomes
less prominent and hence speakers are more confusable. Though
this would be common in any method it appears to be especially
pronounced when voting is used.

Fig. 3.Effect of increase in number of speakers

Also it was observed that the errors made by the voting scheme
and the classical GMM are in some sense orthogonal. Very few
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(usually only 1) speaker(s) are common to the N best lists of both
systems. This suggests a natural method to overcome the limita-
tions of the voting based identifier.

If voting is to be used in cases where many speakers are en-
rolled, it is essential that the number of competing speakers is re-
duced by a first pass and then voting is used in a second pass.
At the same time if it is required that the amount of computation
should not be increased, the first pass should not require the calcu-
lation of an entirely different set of probabilities.

The solution proposed is to perform a first pass using classi-
cal GMM, and pick out the top N speakers, that is the N speak-
ers λj which have highest probability p(�xi|λj) of generating the
frame �xi. The probabilities of each frame, for each speaker calcu-
lated using the speaker’s corresponding GMM are stored for later
processing. These top N speakers are then compared using the vot-
ing mechanism in a second pass. The probabilities of each frame
are the same as those calculated in the first pass and hence the
stored values may be reused.In this second pass instead of multi-
plying the probabilities to find the best speaker, which is what was
done with classical GMMs, voting is performed as described ear-
lier. Thus the benefits of both the GMM and the voting method
may be obtained with negligible increase in computation.

7. EVALUATION OF THE COMBINATION SCHEME

The combination scheme(Combo) was evaluated on the KING data-
base with 10 speakers, with all 48 speakers, and on the SPIDRE I
and II databases. Since the KING database was used primarily to
compare with the baseline GMM as described in [4].The percent-
age improvement(%Impr. with Combo.) for different values of N
(where N is the the number of best matching speakers remaining
after the first pass with classical GMM) is shown in Table.4.

Train Test GMMs Voting N Combo %Impr.
(sec) (sec) (%ER) (%ER) (%ER) with Combo.
30 5 13.93 11.37 5 11.82 15.14
30 5 10 11.16 19.88
30 5 20 10.98 21.17
30 5 30 11.28 19.02

30 10 11.66 9.14 5 9.78 16.12
30 10 10 9.56 18.01
30 10 20 8.72 25.20
30 10 30 9.26 20.58

Train Test GMMs Voting N Combo %Impr.
(sec) (sec) (%ER) (%ER) (%ER) with Combo.
60 5 4.99 3.72 5 4.25 14.83
60 5 10 3.33 33.27
60 5 20 3.12 37.47
60 5 30 4.00 19.84

Train Test GMMs Voting N Combo %Impr.
(sec) (sec) (%ER) (%ER) (%ER) with Combo.
60 10 3.35 2.18 5 3.13 6.23
60 10 10 2.21 34.02
60 10 20 1.82 45.67
60 10 30 2.37 29.25

Table. 4.Results on SPIDRE with 44 Speakers

Train Test GMMs Voting Combo %Impr.
(sec) (sec) (%ER) (%ER) (%ER) with Combo.
60 5 9.03 14.31 8.20 9.19
60 10 6.97 10.39 5.22 25.11

Table. 5.Results of on KING with 48 Speakers

8. CONCLUSION

The importance of identifying unreliable frames in speaker recog-
nition was motivated. A voting mechanism for combining Gaussian
Mixture Probabilities was presented to reduce the effect of few
bad frames on identification accuracy. The voting method is seen
to provide an improvement over Classical GMMs on almost all
datasets evaluated. In only a few cases with a larger number of
speakers, on the KING database, it does not perform as well as
expected. This motivated the use of a combination method using
both voting and Classical GMM testing. This second method is
found to always perform better than the Classical GMM while not
requiring any extra computation. With optimal choice of N (usu-
ally about half the total number of speakers), it is found to always
perform better than voting or Classical GMMs.

Also it was observed that the voting scheme and the classical
GMM are to some degree orthogonal. Very few (usually only 1)
speaker(s) are common to the N best lists of both systems. Thus
the voting mechanism is extracting a different kind of information
from the Gaussian probabilities than the classical GMM. The com-
bination performs much better than GMMs or voting alone even
though all three methods work with the same probabilities.
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