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ABSTRACT

We consider speaker identification involving background noise,

assuming no knowledge about the noise characteristics. A new

method, namely universal compensation (UC), is studied as a solu-

tion to the problem. The UC method is an extension of the missing-

feature method, i.e. recognition based only on reliable data but ro-

bust to any corruption type, including full corruption that affects

all time-frequency components of the speech representation. The

UC technique achieves robustness to unknown, full noise corrup-

tion through a novel combination of the multi-condition training

method and the missing-feature method. Multi-condition training

is employed to convert full-band spectral corruption into partial-

band spectral corruption, and the missing-feature principle is em-

ployed to reduce the effect of the remaining partial-band corrup-

tion on recognition by basing the recognition only on the matched

or least-distorted spectral components. The combination of these

two strategies makes the new method potentially capable of deal-

ing with arbitrary additive noise – with arbitrary temporal-spectral

characteristics – based only on clean speech training data and sim-

ulated noise data, without requiring knowledge about the actual

noise. The SPIDRE database is used for the evaluation, assum-

ing various corruptions from real-world noise data. The results

obtained are encouraging.

1. INTRODUCTION

Accurate speaker recognition is made difficult due to a number of

factors, with handset/channel mismatch and environmental noise

being two of the most prominent. During the past years, much

research has been conducted towards reducing the effect of hand-

set/channel mismatch. Linear and nonlinear compensation tech-

niques have been proposed, with applications to feature, model

and match-score domains (see, for example, [1]–[4]). In this paper,

we study the problem of speaker recognition in noisy conditions,

assuming speech samples corrupted by background noise.

To date, research has targeted the impact of background noise

through filtering techniques such as spectral subtraction or Kalman

filtering [5][6]. Other techniques rely on a statistical model of

the noise, for example, PMC (parallel model combination) [7][8].

Recent studies on the missing-feature method suggest that, when

knowledge of the noise is insufficient for cleaning up the speech

data, one may alternatively ignore the severely corrupted speech

data and base the recognition only on the data with least contam-

ination. This can effectively reduce the influence of noise while

requiring less knowledge than usually needed for noise filtering

This work was supported by the UK EPSRC grant GR/S63236.

or compensation (e.g., [9]–[11]). However, the missing-feature

method is only effective for partial noise corruption, i.e., the noise

only affects part of the speech representation.

This paper investigates speaker identification involving addi-

tive background noise, assuming any corruption type (e.g., full,

partial, stationary or time-varying), and furthermore assuming no

knowledge about the noise characteristics. The missing-feature

method for accommodating partial noise corruption is extended

to accommodate full noise corruption, i.e. focusing recognition

only on least-distorted features while assuming noise, with un-

known characteristics, affecting all time-frequency components of

the speech representation. The new technique involves a novel

combination of the multi-condition training method and the miss-

ing feature method. Multi-condition training is employed to con-

vert full-band spectral corruption into partial-band spectral corrup-

tion through compensations for simulated wide-band noise, and

the missing-feature principle is employed to reduce the effect of

the remaining partial-band corruption on recognition by basing the

recognition only on the matched or least-distorted spectral compo-

nents. The combination of these two strategies makes the new

method potentially capable of dealing with arbitrary additive noise

– with arbitrary temporal-spectral characteristics – based only on

clean speech training data and simulated noise data, without re-

quiring knowledge about the noise. We term the new technique

Universal Compensation (UC). An early study of the model, for

robust speech recognition, was described in [12].

2. UNIVERSAL COMPENSATION

The UC technique for speaker recognition includes three steps:

1. Construct a set of models for short-time speech spectra us-

ing artificial multi-condition speech data, consisting of the

clean training data and a collection of noisy training data

generated by corrupting the clean training data with artifi-

cial wide-band flat-spectrum noise at consecutive signal-to-

noise ratios (SNRs);

2. Given a test spectrum, search for the components in each

model spectrum that best match the corresponding compo-

nents in the test spectrum, and produce a score based on the

matched spectral components for each model spectrum;

3. Combine the scores from the individual model spectra to

form an overall score for recognition.

These three steps may be explained using a simple example, illus-

trated in Fig.1, which displays the frequency spectrum of a sin-

gle frame of speech. Fig.1 shows, on the left, an instance of a

clean speech spectrum, representing the data available for training.
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Fig. 1. Illustration of the UC method. Left to right: clean training

spectrum, model spectra and noisy test spectrum.

Wide-band flat-spectrum noises (i.e. white noises) with different

SNRs are added, respectively, to the waveform of the clean frame,

to form a set of noisy training data, i.e. Step 1. The noise may

be generated by passing a white noise through a low-pass filter

with the same bandwidth as the speech spectrum. Assume that this

leads to a set of model spectra, shown in the middle of Fig.1, each

model spectrum corresponding to a specific SNR, and including

an appropriate compensation for a wide-band flat-spectrum cor-

ruption at that SNR. The clean spectrum is also included in the

model set (shown at the top of the model spectra). Fig.1 shows, on

the right, an example of a test spectrum, which is assumed to be

the result of the clean frame with the addition of some noise that

causes a full-band corruption. The shape of the noise spectrum

can be arbitrary and is not known a priori. While the test spectrum

involves a full-band corruption with respect to the clean spectrum,

it involves only a partial-band corruption when compared to some

of the model spectra, for example, model spectra 2, 3 and n, as-

suming that a local frequency-band distortion in the test spectrum

due to the addition of a noise may be matched by the correspond-

ing model spectrum with the addition of a “flat-spectrum” noise

in the same frequency band with a similar SNR. These matched

parts, for this particular example, are enclosed within the circles

over the appropriate model spectra as shown in Fig.1. Thus, the

step of comparing the test spectrum with each model spectrum to

find their matched components effectively results in a conversion

of a full-band corruption to a series of partial-band corruptions,

assuming that the test spectrum involves only a partial-band cor-

ruption when compared to at least one of the model spectra. The

effect of partial-band corruption on recognition can be reduced by

ignoring the distorted spectral components. This is achieved in

Step 2 by calculating a score for each model spectrum based only

on the matched spectral components. Finally, the scores from the

individual model spectra are combined to produce an overall score,

to indicate the probability of the test spectrum associated with the

model, i.e. Step 3. Note that a partial-band corruption remains

partial in this compensation.

Use of artificially added noise at various SNRs to account for

unknown noise sources is not new in speech recognition. The UC

method is novel in that it combines artificial noise compensation

with the missing-feature method, to accommodate mismatches be-

tween the simulated noise condition and the actual noise condition.

This combination makes it possible to accommodate sophisticated

spectral distortion, i.e. full, partial, white, colored or none, with

simulated noises of a limited variety, e.g. white noise at a limited

number of SNRs.

3. ACOUSTIC MODELING FOR RECOGNITION

Formulating the UC method is straightforward following the above

example. Assume that L levels of SNR are used to generate the

wide-band flat-spectrum noises to form the noisy training data,

and that each model spectrum is modeled by a probability distribu-

tion for its spectral components. Let p(x|λ, l) represent a model

spectrum, associated with speaker λ and trained for SNR level l
(l = 1, 2, ..., L), expressed as the probability distribution of the

model spectral vector x = (x1, x2, ..., xN ) consisting of N com-

ponents. For convenience, we address the model spectrum by its

index (λ, l).

Let o = (o1, o2, ..., oN ) be a test spectrum, which may be

corrupted by noise but knowledge about the noise spectrum is not

available. Recognition involves estimating the probability of o for

each speaker λ, based on the probabilities of o over the individual

model spectra (λ, l) associated with λ. As described in Step 2,

only the matched components between the test spectrum and the

model spectrum are used in the estimation; the mismatched spec-

tral components are ignored to accommodate mismatches between

the training and testing conditions. Denote by o(λ, l) the matched

subset, containing all the matched components in o for model spec-

trum (λ, l). Given o(λ, l) for each (λ, l), the overall probability of

o, associated with speaker λ, can be defined as (Step 3):

p(o|λ) =
L∑

l=1

p(l|λ)p(o(λ, l)|λ, l) (1)

where p(o(λ, l)|λ, l) is the probability of o(λ, l) associated with

model spectrum (λ, l), and p(l|λ) is a mixture weight, correspond-

ing to the prior probability of SNR level l for speaker λ. In this

paper, we assume that the individual spectral components are in-

dependent of one another. So the probability p(osub|λ, l) for any

subset osub ∈ o can be written as

p(osub|λ, l) =
∏

on∈osub

p(on|λ, l) (2)

where p(on|λ, l) is the probability for the nth spectral component

associated with model spectrum (λ, l).

Equation (1) is reduced to the standard mixture model when

all spectral components from the test spectrum are involved in the

computation (i.e., o(λ, l) = o). This mixture model including all

spectral components is used for the training data, to model speech

spectra without missing components. This model is estimated on

the training set consisting of both clean data and artificial noisy

data involving wide-band flat-spectrum noise at different SNRs.

This estimation can be carried out in the same way as a conven-

tional mixture model using the standard EM algorithm.

Given the model, computing the mixture probability in (1) us-

ing only a subset of data for each mixture density is required in

testing for reducing the effect of mismatched noisy spectral com-

ponents on recognition. To achieve this, we need to decide the

matched subset o(λ, l) ∈ o for each model spectrum (λ, l). In

principle, the traditional missing-feature methods concerning the

the removal of corrupt data based on an estimate of the structure

of the corruption may be used to tackle this problem. In this paper,
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we consider a solution to the problem by maximizing the appro-

priate probabilities. If we assume that the matched subset pro-

duces a large probability, then o(λ, l) may be defined as the subset

osub that maximizes the probability p(osub|λ, l) among all pos-

sible subsets in o. However, (2) indicates that p(osub|λ, l) is a

function of the size of the subset osub, implying that the values

of p(osub|λ, l) for different sized subsets are of a different order

of magnitude and are thus not directly comparable. A solution

to this is to replace the conditional probability of the test subset

p(osub|λ, l) with the posterior probability of the model spectrum

p(λ, l|osub), which is defined as follows:

p(λ, l|osub) =
p(osub|λ, l)p(λ, l)∑

λ′,l′ p(osub|λ′, l′)p(λ′, l′)
(3)

where p(osub|λ, l) is the conditional probability as defined in (2)

and p(λ, l) = p(l|λ)p(λ) is the prior probability of model spec-

trum (λ, l), where p(l|λ) is defined in (1) and p(λ) is the prior

probability of speaker λ. The posterior probability p(λ, l|osub)
defined in (3) is normalized for the size of the test subset, always

producing a value in the range [0, 1] for any sized osub. Most

importantly, it can be shown that this posterior probability favors

large matched subsets, i.e., it produces larger values for the subsets

containing larger numbers of matched components. Thus, by max-

imizing the posterior probability p(λ, l|osub) with respect to osub,

we should be able to obtain the subset for model spectrum (λ, l)
that contains all the matched components in terms of the maxi-

mum a posteriori (MAP) criterion. Assuming an equal speaker

prior p(λ), it can be shown that (1) can be expressed in terms of

the maximized posterior probability, i.e.

p(o|λ) ∝
L∑

l=1

max
osub∈o

p(λ, l|osub) (4)

So far we have discussed the calculation of the probability for a

single frame. The probability of a speaker given an utterance with

T frames OT
1 = {o1, o2, ..., oT } can be calculated as

p(OT
1 |λ) = [

T∏

t=1

p(ot|λ)]1/T
(5)

where p(ot|λ) is computed based on (4). Since p(ot|λ) is a prob-

ability measure, the normalization in (5) against the length of the

observation T makes the value of p(OT
1 |λ) also usable as a confi-

dence score to verify the identification result.

4. EXPERIMENTS AND DISCUSSION

The new UC model was evaluated for closed-set speaker identifica-

tion using the SPIDRE database, a subset of the Switchboard cor-

pus. The database contains 45 target speakers. For each speaker,

four conversation halves are provided, of which two are from the

same handset. In our experiments, the two conversations from the

same handset were used, one for training and the other for testing.

For the UC model, the clean training utterance for each speaker

was multiplied by adding simulated wide-band flat-spectrum noise

to the utterance at six SNRs: 20 dB, 18 dB, 16 dB, 14 dB, 12 dB

and 10 dB. This gives a total of seven training utterances (includ-

ing the clean training utterance) for each speaker, with seven dif-

ferent SNR levels. Based on these, a UC model, (1), was built

for each speaker, with 224 diagonal Gaussian mixtures to account

Table 1. Identification accuracy (%) for the new UC model and a

baseline GMM, for three different test durations - 15s, 10s and 5s,

averaged over six different noises - car, jet engine, mobile phone

ring, restaurant, pop song and street

SNR 15s 10s 5s

(db) UC GMM UC GMM UC GMM

Clean 91.11 91.11 88.89 88.89 86.67 86.67

20 87.78 82.22 88.52 79.63 84.45 76.30

15 85.19 69.26 85.18 68.52 80.00 58.89

10 74.45 41.85 74.82 44.07 68.89 39.26

Table 2. Identification accuracy (%) for different types of noise,

averaged over SNR between 10 - 20db

Noise 15s 10s 5s

UC GMM UC GMM UC GMM

Car 85.93 75.56 82.22 74.07 80.00 68.15

Eng. 86.67 64.44 89.63 64.45 82.22 60.74

Ring 80.00 54.82 78.52 50.37 75.56 40.74

Rest. 76.30 60.74 78.52 61.48 74.07 57.78

Song 87.41 71.85 88.15 74.07 82.22 65.92

Street 78.52 59.26 80.00 60.00 72.59 55.56

for the expanded training set (on average, 32 mixtures per SNR

level). The UC model was compared to a baseline Gaussian mix-

ture model (GMM) with 32 mixtures trained on the clean data.

The speech was divided into frames of 20 ms at a frame rate of 10

ms. Each frame was featured using 12 log filter-bank amplitudes,

decorrelated by a high-pass filter H(z) = 1 − z−1. The first-

order delta parameters were appended, thus forming a 24-element

feature vector for each frame.

Six different real-world noises were used in the experiments.

They were: 1) a car noise, 2) a jet engine noise, 3) a polyphonic

mobile phone ring, 4) a restaurant babble noise, 5) a pop song

segment with mixed music and voice of a female singer, and 6) a

street noise. These noises were added, respectively, to each clean

test utterance at three SNRs: 20 dB, 15 dB and 10 dB, to simu-

late real-world noise corruption. The first 5, 10 and 15 seconds of

speech from each test conservation were used for test utterances,

respectively, corresponding to three different test durations.

Table 1 shows the performances by the UC model and the

baseline GMM, as a function of the SNR and test duration, aver-

aged over all the six noises (including the clean condition). Table 2

shows the results from a different angle, giving the results of the

two systems for individual noise, averaged over SNR between 10-

20db. The two tables indicate that the new UC model has improved

over the baseline GMM in all tested noisy conditions, without hav-

ing assumed any knowledge about the noise. Table 1 also indicates

that the UC model is capable of achieving the same identification

accuracy as the baseline GMM in clean testing conditions.

For comparison, a multi-condition GMM was trained using

both clean and noisy data for car, restaurant and street noise each

at three SNRs: 20 dB, 15 dB and 10 dB (thus with a total of ten

clean/noisy conditions). The model used 224 mixtures for each

speaker (the same number of mixtures as used in the UC model).

Fig.2 shows the comparison. The multi-condition model improved

over UC in two matched conditions (i.e., car and street). However,

the model performed poorer than UC in the restaurant noise and
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Fig. 2. Comparison to a multi-condition model trained for car, res-

taurant and street noises and tested in matched/mismatched condi-

tions, averaged over SNR between 10-20db, test duration = 15s.

Fig. 3. Difference in performance for different noises, for the UC

model with and without the MAP optimization for feature selec-

tion, averaged over SNR between 10-20db, test duration = 15s.

in all the unseen noises (i.e., jet engine, phone ring and pop song),

resulting in a poorer average performance, indicating the potential

of the UC model for dealing with a wider range of noises.

The impact of the MAP optimization for selecting the feature

subset in computing the match score, as shown in (4), is illus-

trated in Fig.3, showing a comparison of performance between the

UC models with the optimization and without the optimization.

The latter is equivalent to a GMM trained on multi-condition data

for wide-band flat-spectrum noise at seven different SNRs, as de-

scribed above. The optimization has led to improved accuracy in

all tested noisy conditions. As expected, the improvement is more

significant for the noises that are significantly different in the over-

all spectral structure from the wide-band flat-spectrum noise used

in the compensation. In our experiments, for example, these noises

include the mobile phone ring and pop song.

As indicated in (5), the match score produced by the UC model

can be used both for identification and additionally as a confidence

measure for verification, thereby improving the identification ac-

curacy through rejecting the results with a low confidence. This is

illustrated in Fig. 4. For example, at a rejection rate of 30%, it is

possible to improve the identification accuracy from about 80% to

about 90% for the car noise, and from about 66% to about 77% for

the street noise, for an SNR = 10 db and a test duration of 15s.

Fig. 4. Identification accuracy as a function of rejection rate, pro-

duced by the UC model for different noises. SNR = 10db, test

duration = 15s.
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