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ABSTRACT

Recently, we established the equivalence of an ergodic HMM
(EHMM) to a parallel sub-word recognition (PSWR) framework
for language identification (LID). The states of EHMM correspond
to acoustic units of a language and its state-transitions represent
the bigram language model of unit sequences. We consider two
alternatives to represent the state-observation densities of EHMM,
namely, the Gaussian mixture model (GMM) and hidden Markov
model (HMM). We present a segmental K-means algorithm for
the training of both these types of EHMM (EHMM of GMMs and
EHMM of HMMs) and compare their performances on a 6 lan-
guage LID task in the OGI-TS database. EHMM of GMMs has
a performance comparable to PSWR and superior than EHMM
of HMMs; we provide reasons for the performance difference be-
tween EHMM(G) and EHMM(H), and identify ways of enhancing
the performance of EHMM(H) which is a novel and powerful ar-
chitecture, ideal for spoken language modeling.

1. INTRODUCTION

Automatic language identification (LID) has become an important
research problem over the last decade with several promising so-
lutions [1], [2]. One of the earliest work in LID by House and
Neuberg [3] was based on the now popular hidden Markov model
(HMM); here, they exploited the potential of the discrete ergodic
HMM to model sequential characteristics of broad phonetic labels
derived from texts of different languages. Following this, there
have been a few other attempts to use HMMs for LID [4], [5].
However, the moderate results of these work only raised doubts on
the modeling capability of HMMs [1]; in general, it was concluded
that multi-state HMMs cannot perform any better than static mod-
els like GMM [4], [1]. However, more recently [6], we established
the equivalence of the ‘parallel sub word recognition’ framework
to an ergodic HMM (EHMM) along with clear experimental vali-
dation which showed that ergodic HMMs can offer as good a per-
formance as PSWR, which is essentially a sub-word unit based
‘parallel phone recognition’ (PPR) system – one of the popular
phone recognition frameworks for LID till date [7], [1], [2]. The
equivalence is based on the following correspondences between
PSWR and EHMM:
1. The states (observation densities) of the EHMM correspond to
sub-word units (with associated sub-word HMMs) which consti-
tute the front-end sub-word recognizer (SWR) in PSWR.
2. The state-transition probabilities of EHMM represent the bi-
gram statistics of sub-word units in sequences obtained by the
front-end SWR decoding. This is equivalent to the bigram back-
end language model (LM) of PSWR, which models the phonotac-
tics of a language.

3. Evaluation of the Viterbi likelihood by EHMM exactly corre-
sponds to the joint-decoding in PSWR using both the front-end
SWR and back-end (bigram) LM.

In this paper, we deal with two types of EHMM, based on the
type of model used to represent the state observation densities of
the EHMM, namely, Gaussian mixture model (GMM) and hidden
Markov model (HMM). We refer to the EHMM with GMM obser-
vation density as EHMM(G) and the EHMM with HMM observa-
tion density as EHMM(H). We present a segmental�-means algo-
rithm for training of both these types of EHMM (EHMM(G) and
EHMM(H)). We report their performances on a 6 language LID
task in the Oregon Graduate Institute – Telephone Speech (OGI-
TS) database [7].

EHMM(G) is equivalent to a PSWR system, where an acoustic
sub-word unit (SWU) is modeled by a GMM. Likewise, EHMM(H)
corresponds to the case when a SWU in PSWR is modeled by
a HMM. Interestingly, the SWU GMM of EHMM(G) proves to
be a more appropriate model of the SWUs of a language (states
of EHMM(G)); the SWU GMM, despite being a static model of
the SWU, enjoys the advantage of being insensitive to context-
dependencies of the SWUs, thereby generalizing to acoustic seg-
ments of all possible contexts. In contrast, in the case of EHMM of
HMMs, a sub-word unit HMM (state of EHMM(H)), being a tem-
poral model of a SWU, becomes specialized to specific contexts
and suffers from poor context generalizability to other contexts of
the SWUs as may occur in unseen data. Since EHMM(H) is a
novel and powerful architecture in the theory of HMMs, ideally
suited to spoken language modeling, we identify ways of enhanc-
ing its performance.

2. ERGODIC-HMM (EHMM) BASED LID

Fig. 1 shows a typical EHMM based LID system for � languages.
An � - language LID task is to classify an input speech utterance
(of any speaker and any text), as belonging to one of � languages
��� � � � ��� . The EHMM system has � paths for a � language
LID task. A path ‘�’ (� � �� � � � � � ), has an EHMM �� of language
��. For a given input utterance, EHMM yields � ‘Viterbi likeli-
hood’ scores (�� in Fig. 1), one for each language ��, obtained by
a Viterbi decoding of the input utterance � by the EHMM �� of
language ��. The maximum - likelihood (ML) classifier identifies
the language of the input utterance as ��� which has the highest
likelihood (score)��, i.e., �� � ��������������� ��.

3. EHMM PARAMETERS

An � -state ergodic HMM �� of language �� is specified as �� �
���� ��� ���; we refer to this as the ‘primary HMM’. These three
parameters of �� are as follows (Fig. 2):
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Fig. 2. Ergodic-HMM of sub-word GMMs / sub-word HMMs

1. Observation density ��: �� is the set of � observation densi-
ties of the ��.

� In the case of EHMM(G), each state of the primary HMM
is modeled by GMMs and is given by �� � �����o���

�
���

� ���
�� �

�
�� � � � � �

�
��. The GMM of state �, ��

� is given
by ��

� � ����� ��������
�
��� where 	 = 9, i.e., each ��

�

has 9 mixtures.

� In the case of EHMM(H), each state of the primary HMM
is modeled by a secondary HMM and is given by �� �
�����o��

�
��� � �
��� 


�
�� � � � � 


�
��. A secondary HMM,


��, of state � is typically a 3 state left-to-right HMM with
3 mixture Gaussian per state.

2. Transition matrix ��: �� � ������ �� 
 � �� � � � �� spec-
ifies the transition probabilities ��� for a sub-word unit modeled
by 
�� (or ��

�) to transit to another unit modeled by 
�� (or ��
�).

3. Initial state distribution �� � �� � ������ � � �� � � � ��
specifies ��� – the probability that sub-word unit 
�� (or ��

�) is
the starting state.

In the case of EHMM(H), a state � in �� is characterized by
an observation density ������ � ��o�
���, which is a ‘segmental’
density in that, it yields the likelihood of a segment � given the
sub-word HMM 
��. Thus �� is an HMM of HMMs; i.e., each
state of EHMM is itself another HMM. In the case of EHMM(G),
each state corresponds to a frame (a feature vector o�). ���� ���
model the ‘phonotactics’ of language ��. Such an ergodic HMM
is ideally suited to model a language at two levels: phonotactics is
modeled by �� which governs the sequence of SWUs (states) that
can be realized and the acoustic manifestation of each sub-word so
realized is modeled through ��.
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3.1. Viterbi likelihood

Given an input utterance� � ������� � � � ��� �, the ergodic HMM
�� of language �� can evaluate the Viterbi likelihood (score)�� as,

�� � �
��������� � ���

�
� ��������

� ���
�

�� ����� ��� � � ������� (1)

In the case of EMM(G), Eqn. (1) is given by

�� � ���
�

�
�����

�
��
�o�� �

��
���

�
������� � �

�
���o��

��
(2)

In the case of EHMM(H), Eqn. (1) is given by

�� � ���
�	�	


�
���������


�
�� � �


�
���

�
������� � �����


�
��
�
��

(3)

where, � � ���� ��� � � � � �
�, with �� � 	 and �
 � � , are
the segment boundaries which segments � � ����� � � ��� � into
� segments ���� ��� � � � � �
�, where, segment �� � ���������
� � � � ��� �. � is any arbitrary state sequence of �� given by � �
����� � � � ������ � � � �
�, where state �� � ��� 
� � � � ���. The
corresponding observation density is 
��� (drawn from �� � �
���


��� � � � � 

�
��), which evaluates the probability of the ‘observation

segment’ ��, ��� ����, as the Viterbi likelihood �����
��� �.
Eqn. (3) maximizes �� over the variables ����� ��. Evalua-

tion of �� by Eqn. (2) or Eqn. (3) in EHMM optimally combines
both the acoustic likelihood � ����� ��� and the language model
likelihood � ������ as in the joint decoding for PSWR [6].

4. SEGMENTAL �-MEANS TRAINING OF EHMM

The parameters ���� ��� ��� of EHMM �� are learnt from the train-
ing utterances �� � ���
�

�

�� of language �� using a segmental

�-means (SKM) algorithm. Through the SKM, we jointly opti-
mize the state observation densities and the state-transitions (bi-
gram language model). Fig. 3 illustrates this procedure which is
as follows:
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Step 1: Initialization

Set iteration count � � �. Initialize ����� � ���� ��� ��� with

1. �� as equiprobable, i.e., ��� � ���� ���	.

2. �� as equiprobable, i.e., ��� � ����� � �� 
 
 
 �� .

3. Initialization of the state observation densities ��:

� For EHMM(G): The � state observation densities �� =
���

��
�
��� are initialized as follows:

A vector quantization (VQ) codebook is designed using the
training feature vectors of language ��. Let this VQ code-
book be C� = �c��� c��� 
 
 
 � c���. All training vectors
quantized to codeword c�� are used to initialize the GMM
��
� of state ‘�’ of ��, i.e., the parameters of ��

�, �����

�������

�
��� are estimated from �o� � ��o�� = c��� (where

��o�� = c�� : ��o�� c��� � ��o�� c���, 	 � �� 
 
 
 �� ) us-
ing the standard �-means algorithm.

� For EHMM(H): �� = ��������
�
��� is initialized by the

language-independent sub-word unit inventory, ��������
�
���

= ���� ��� 
 
 
 � �� � (Fig. 3(a)) obtained as follows:
i) Automatic segmentation: The training utterances (in the
form of MFCC vector sequence) are segmented into acous-
tic segments using the maximum-likelihood (ML) segmen-
tation technique. ii) Segment clustering: The resulting
acoustic segments are clustered into � clusters by apply-
ing the �-means algorithm on the centroids of the acous-
tic segments. iii) Segment modeling: The segments be-
longing to each of the � clusters are modeled by a 3-state
left-to-right HMM resulting in an inventory of� sub-word
HMMs, ���� ��� 
 
 
 � ���.

Step 2: Viterbi decoding

Given a set of training utterances of language ��, �� � �����
�
���,

let � � ����� 
 
 
�	 � be the observation feature vector sequence
(of � frames) of a typical utterance ��� . The Viterbi decoding of
utterance ��� (or simply, �) by ����� yields the Viterbi likelihood
� �

����� given by,

� �

����� � � ������������

� ���
�

�� ����� ������� ���������� (4)

which is evaluated as in Eqn. (2) for EHMM(G) or Eqn. (3) for
EHMM(H).

Step 3: Parameter update

Let 	���� � ��������
�
��� be the set of optimal sub-word unit

(state) sequences obtained by Viterbi decoding of the training ut-
terances �� � �����

�
��� at iteration � of the SKM algorithm,

i.e., ������ is the optimal state sequence �� � �����
�

� 
 
 
 �
�


��
obtained by Viterbi decoding of utterance ��� using ����� (the
ergodic-HMM parameters at iteration ���) as given by Eqn. (4).
At iteration �� 	 ��, the parameters ���� ��� ��� of ���� 	 �� are
updated using both �� � �����

�
��� and ������������ as follows:

� Update of �� and ��:

��� �
	������ � �� ��� � 	�

	������ � ��
��	 � �� 
 
 
 �� (5)

��� �
	���� � ��

�
� � �� 
 
 
 �� (6)

where, the occurrence counts 	�
� 
� and 	�
� are measured over
all the � optimal state-sequences �� of the � training utterances,
i.e., over all the � SWU sequences ������������.

� Update of ��:

Æ For EHMM(G): Let �� � ��� � �
�

� � �� be the set of all ob-
servation feature vectors of ��������� which have been assigned to
state ‘�’ by the optimal Viterbi decoding of Eqn. (4). Update the
GMM parameters ����� 
����������� of state ‘�’ as follows:
Perform �-means clustering of feature vectors in �� into � clus-
ters. Let the resultant clusters be given by ��

� � ��� � �� 

cluster � of S��. The updated GMM parameters are given by :


�� �
�

	��

�

o����
�

�� (7)

��� �
�

	��

�

o����
�


�� � 
���
�� � 
���
�

(8)

��� �
	��
	�

(9)

where, 1 � l � �; 	�� is the number of observation vectors in
cluster ��

� and 	� is the total number of observation vectors in
S�.

Æ For EHMM(H): Let �� � ��� � ��� � �� be the set of all
segments of ��������� which have been assigned to state � (sub-
word unit model ���) by the optimal Viterbi decoding of Eqn. (4).
Update sub-word unit model ��� using the segments in ��, i.e.,
build a new HMM ��� from these segments:

��� � ��� ��� � ��� � ��� � ��� � � � �� 
 
 
 �� (10)

Step 4: Convergence

� �� ��� �
�

�

��

��� �
�

�������� is the average Viterbi likelihood
over all the � training utterances of language ��, after Eqn. (4)
of iteration �. �� is the number of frames in observation vector
sequence of utterance ��� and � ������ is the Viterbi likelihood as
per Eqn. (4) using ����� at iteration �.

Terminate SKM iteration if �� �� ���� � �� �� � ��� � �; other-
wise continue with ‘Step 2: Viterbi decoding’ with � � �	�. � is
a suitable threshold to ensure a good convergence.

5. EXPERIMENTS AND RESULTS

We present here experimental results of LID performance using
EHMM(G) and EHMM(H) systems and compare the results 1.

5.1. Database

EHMM(G) and EHMM(H) are evaluated on 6 languages of the
OGI-TS corpus [7] - English, German, Hindi, Japanese, Span-
ish and Mandarin. The EHMM(G) and EHMM(H) systems are
trained on 50 ‘story-bt’(story-before-the-tone) utterances per lan-
guage spoken by 50 different speakers. Both the systems are tested
using 20 ‘story-bt’ utterances per language outside the training
data; the training and test utterances are each 45 seconds long.
Both the systems use a 26-dimensional parameter vector of 12
MFCC, 12 delta-MFCC, energy and delta energy.

1We thank P. Srinivas and H. V. Sharada for their code and data.
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5.2. Parameters of EHMM(G)/(H) systems

In EHMM(G), the main parameters are the number of states ‘� ’
and the number of Gaussian mixtures/state ‘�’. For each language,
EHMM(G) system is designed for � = 8, 16, 32, 64 with � = 9
for each� .

In EHMM(H) system, the main parameters are the number of
states of primary HMM ‘� ’, the number of states of secondary
HMM and the number of Gaussian mixture/state of secondary HMM.
In our experiment, for each language, EHMM(H) systems were de-
signed for� = 8, 16, 32, 64, and each state is modeled by 3 state
left to right HMM with 3 Gaussian mixture/state.

5.3. Results
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Fig. 4. LID performance of EHMM(G) and EHMM(H)

Fig. 4 shows the % LID accuracy of EHMM(G) and EHMM(H)
for training and test data on the 6-language task in OGI-TS database
for number of states ‘� ’ ranging from 8 to 64. The following can
be observed from this figure:

The training data performance shows the potential of EHMM(G)
and EHMM(H) to achieve very high LID classification accuracy.
The recognition performance increases significantly with increase
in the number of states� for both systems. Both EHMM(G) and
EHMM(H) have comparable performance on training data (96%
for EHMM(G) and 98% for EHMM(H) for� = 64). On test data,
the best performance for EHMM(G) is 62.5% for �=32 and that
of EHMM(H) is 55.83% for � = 64. EHMM(G) has a perfor-
mance comparable to that of the PSWR system [6] (which is an
acoustic sub-word equivalent of the PPR system [7]), which has
an LID accuracy of 98.3% on training data and 65% on test data
with a sub-word unit inventory size of 50 (equivalent to the number
of states� in EHMM here).

The above results show that EHMM(G) has better (or compa-
rable) performance to EHMM(H). An important factor contribut-
ing to this performance difference between EHMM(G) and EHMM(H)
is the extent to which their state observation densities (GMM or
HMM) can generalize to various contexts of the acoustic segments
associated with a state of the respective EHMM. A secondary HMM
associated with each state in EHMM(H) is left-to-right, which al-
lows for modeling temporal dynamics of the segments of a state
(sub-word unit). However, it can atmost represent optimally only

one kind of left-context and right-context of the various segments
associated with a state. Thus, it fails to generalize to acoustic seg-
ments of other contexts.

A GMM model of a SWU (state) in EHMM(G) is only a static
model of the observation vectors belonging to that state; while this
may appear as a poor modeling of the dynamics of the acoustic
segments spanning the state, it provides the incidental advantage
of being able to give high likelihoods equally well to segments
of various contexts; i.e., the GMM is not fine tuned to any one
particular context, and generalizes to other contexts; whereas, the
left-to-right secondary HMM of a state becomes fine tuned to a
particular context and fails to adequately model other contexts.

Therefore, considering means of enabling the secondary HMM
to model context dependencies may be one way to improve the
performance of EHMM(H). One possible way is to have context-
dependent secondary HMMs as sub-states of a state of EHMM(H);
another possibility is to consider the use of ergodic HMMs as
the secondary HMMs (rather than left-to-right HMMs) which al-
low for entry and exit from any state thereby providing means
of context-dependent modeling. The success of such an ergodic-
HMM to model context-dependency can have implications to sim-
ilar context-dependent acoustic modeling in large vocabulary con-
tinuous speech recognition (in the place of now commonly used
left-to-right triphone models). Moreover, we also note that the
training of EHMM(G) and EHMM(H) with Baum-Welch (BW)
algorithm can also be expected to improve their generalizability.

6. CONCLUSIONS

We have proposed two types of ergodic HMMs (EHMM) for au-
tomatic spoken language identification, namely, EHMM(G) and
EHMM(H), based on the modeling of the state observation density,
either by a GMM or an HMM, respectively. We have presented a
segmental �-means algorithm for the training of both these types
of EHMM and compared their performance on a 6-language LID
task using the OGI-TS database. We have provided reasons for the
performance difference between EHMM(G) and EHMM(H), and
identified ways of enhancing the performance of EHMM(H).
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