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Abstract 

The paper presents a novel approach, integrating multi-layer 
concept information into the trigram language model, to 
improve the understanding accuracy for spoken dialogue 
systems. With this approach, both the recognition accuracy 
and out-of-grammar problem can be largely improved. In the 
experiment using a real-world air-ticket information spoken 
dialogue system for Mandarin Chinese, a relative concept error 
rate reduction of 33% is achieved. 

1. Introduction 

Spoken language understanding is composed of speech 
recognition and language understanding. Consequently, its 
performance would depend on both components, as well as 
their interface [1]. Our speech group in Delta Electronics Inc. 
has been working on research and development of Mandarin 
spoken-language technologies for years and cooperating with 
MIT Spoken Language Systems group. The study of the paper 
was conducted on a telephony Mandarin real-time flight-
schedule inquiry and booking dialogue system, Mandarin 
Mercury, based on the Galaxy architecture [2]. The system 
interacts with the user over the phone through a natural 
conversation and delivers flight schedules and pricing 
information. Its vocabulary includes over 200 major city 
names worldwide and 23 major airline names. It was designed 
as a way of mix-initiative interactions between man and 
machine; hence, natural speaking in Mandarin could be 
understood. However, in our experience, longer utterances are 
still not easy to be understood, which causes the major 
problem on using the system. 

Conventionally speech recognition and language 
understanding are interfaced by n-best word sequences or 
word graphs [3]. A long sentence with speech recognition 
errors or out-of-grammar expressions would cause parsing 
failures. A partial parsing strategy may help with this, if only 
the errors occur beyond the target concept phrases. However, 
the partial parsing sacrifices completeness and depth of 
analysis [4][5]. Our proposed approach integrates multiple 
layers of concept information into the N-gram model for 
speech recognition. Therefore, the speech recognizer not only 
can output the word sequence, but also some additional 
information of the concepts. For instance, the recognizer will 
output “I would like <route>to go to Taipei_‘city-
arrival’</route>”, where “<route>” and “</route>” show 
the beginning and the end of a concept phrase—chunk [6], 
and “Taipei_‘city-arrival’” shows a concept attribute-value 
pair. The chunk tags are about concept information of 
multiple connected words in a phrase, where the lexical 

attributes are that of one word or several words for one entity 
name. Our previous publication presented the use of chunk 
[7]. The study was continued in the paper, extending to the 
use of lexical attributes. Experiments showed them largely 
reducing parsing failures. In our approach, N-gram modeling 
of using the chunk phrases was constructed like a two-layer 
Stochastic Context-Free Grammar (SCFG): a ‘sentence-
pattern’ layer using words and chunk tags as the basic units 
and a ‘chunk phrase’ layer using words in the chunk as the 
units. The two-layered organization of chunk and sentence 
corpora for N-gram modeling was shown to be able to deal 
with data sparseness, so as to significantly reduce the error. 

The following section will explain our proposed 
approaches. Section 3 shows our experimental setup and 
results. Conclusion is made in the end. 

2. Multiple concept layers 

A layer of chunk phrase concept information and a layer of 
lexical attribute concept information were added onto the 
words in the training sentences in our experiments. Two 
major chunk phrase categories, <time> and <route>, were 
defined in our flight-schedule inquiry application. Within 
each chunk category or sentence pattern category, several 
concept attributes were defined, including ‘city-departure’, 
‘city-arrival’, ‘airport-departure’, ‘airport-arrival’, ‘depart’, 
and ‘arrive’ attributes in <route> chunk, and ‘day’, ‘month’, 
‘year’, and ‘weekday’ attributes in <time> chunk, and 
‘airline’, ‘confirm’, and ‘deny’ in sentence pattern. 

Figure 1. Decomposing of chunks and sent-patterns 

Sentences for language training were annotated like in 
Figure 1. The example sentence contains a <time> chunk “on 
March seven” and a <route> chunk “from Taipei to Boston”, 
with additional lexical attributes such as ‘city-departure’, 
‘city-arrival’, ‘day’ and ‘month’. Its sentence pattern is ‘May 
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you please give me a ticket of Thai_‘airline’ <route> 
<time>?’  

A word in the vocabulary may have lexical variations due 
to different chunks or attributes. Given the above lexical 
terms, our speech recognizer generates words with additional 
information about chunk and attribute, which were utilized in 
our language understanding process. We adopted category-
based N-gram modeling approach, which shows advantages 
on dealing with data sparseness [8]. The overall process based 
on the layered concept information within the N-gram models 
showed advantages on understanding accuracy, comparing to 
the traditional way. However, on the contrary, the attachment 
of labels slightly enlarges the vocabulary of the recognizer, 
which may decrease recognition accuracy mainly due to the 
unavoidable data sparseness for almost all applications. 

2.1. Two-layer structural approach of trigram modeling 

The multi-layer stochastic approach is popular in natural 
language understanding as in [9] and [10]. In the paper, we 
experiment the use of multi-layer stochastic approach in 
constructing the N-gram models. A merged N-gram model for 
the recognizer is computed via three different sub-models, 
which were computed separately by the corpora of <route> 
and <time> chunks and of the sentence pattern, respectively. 

Figure 2. Sentence pattern and chunk corpora 

The three corpora of <route> and <time> chunks and the 
sentence pattern work conceptually as a form of a two-layer 
SCFG, as illustrated in Figure 2. The chunk labels are saved 
for the space in the illustration. An attributed word like 
“Boston_‘city-arrival’<route>” was treated different from 
“Boston_‘city-departure’<route>”.  

In the first layer, there are rules from the start symbol S
leading to all abstractive forms. In the second layer, there are 
rules from the only two non-terminals “<route>” and 
“<time>” leading to all <route> and <time> phrases, 
respectively. A large number of grammatical sentences can be 
derived from the above rules, as illustrated in Figure 3. These 
sentences are then used to train the N-gram model. The 
resulted N-gram model inherits the property of two-layer 
statistics and embraces longer distance dependency.

The computing on unifying the three N-gram count-trees 
into a merged N-gram count-tree is by replacing the chunk 
unit <X> with all possible candidates of unit sequence in the 
chunk tree of <X>. First of all, a count number of a triplet in 

the sentence pattern, nS(X, p, q), containing chunk <X> as its 
first element, would be updated by the following three 
conditions: (1) length-one extension, as in Equation 1: 
replacement by single words xi for those with nX(xi, e)
observed in <X> chunk count-tree, where e denoting phrase 
end; (2) length-two extension, as in Equation 2: replacement 
by word pairs (xi, xj) for those with nX(xi, xj, e) observed; and 
(3) length-three extension, as in Equation 3: replacement by 
word triplets (xi, xj, xk) for those with nX(xi, xj, xk) observed. 

XiXSi nexnqpXnqpxn /),(),,(),,( ⋅=  (1) 

XjiXSji nexxnqpXnpxxn /),,(),,(),,( ⋅=  (2) 

XkjiXSkji nxxxnqpXnxxxn /),,(),,(),,( ⋅=  (3) 

p and q denote either a word or a non-terminal node (such as 
chunk <route> or <time> in our case) and nX  the total number 
of <X> chunk phrases.  
Secondly, a count number nS(p, X, q) containing chunk <X> 
as its second element, would be updated by the following two 
conditions: (1) length-one extension, as in Equation 4: 
replacement by single words xi for those with nX(b, xi, e)
observed, where b denoting phrase beginning; (2) length-two 
extension, as in Equation 5: replacement by word pairs (xi, xj) 
for those with nX(b, xi, xj) observed.  

XiXSi nexbnqXpnqxpn /),,(),,(),,( ⋅=  (4) 

XjiXSji nxxbnqXpnxxpn /),,(),,(),,( ⋅=  (5) 

Finally, as <X> is the third element in nS(p, q, X), length-one 
extension could be applied with nX(b, xi) observed.

XiXSi nxbnXqpnxqpn /),(),,(),,( ⋅=  (6)  

Komatani explored similar combination of language models 
but limited on bigram format [17]. The underlining 
assumption is that every sentence with a form like "I would 
like <route> <time>" should share its observations with all 
grammatical sentences in the same form. In our study, we 
found phrases with length larger than two words would 
perform better in its sharing of probabilities. Therefore, the 
merged N-gram model was trained conceptually based on 
more grammatical sentences of larger coverage and could be 
better in dealing with data sparseness. It is different from the 
phrase-based language modeling approach [18][19]. The later 
extends the length of the context information to further reduce 
the perplexity of the language model, while the former 
enhance the data sparseness over probability estimation.   

Since the merged model is in the format of N-gram model, 
it could be easily adopted by many speech recognition 
systems without modification and remains its robustness to 
spontaneous speech, especially as comparing to the Finite-
State-Transducer decoder. On the contrary, earlier researches 
such as the two-layer bigram model [11], the unified language 
model of N-grams and Stochastic Finite State Automata [12], 
and the unified language model of N-grams and SCFG 
[13][14] would need a specialized recognizer. 

2.2. Three-pass understanding process 

In the Mandarin Mercury system, a set of rules was written for 
complete full-sentence parsing. In our initial experiment on 
the proposed N-gram modeling, we use a newly designed 
three-pass parsing approach but with the existing rules.  
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Speech recognition generates a sequence of words with 
additional concept information about chunk phrase categories 
and lexical attributes, such as “May you please en give me a 
ticket ah <route>from Taipei to Boston</route> ah 
<time>on March seven</time>?” The complete parsing of 
the full sentences acts as the first pass. Once it fails, the 
second pass is to parse the joint phrase of <route> and <time> 
chunks like “from Taipei to Boston on March seven” with the 
same parser and grammar, as illustrated in Figure 3. Once it 
fails again, the lexical attributes would be detected and check 
their consistency for the final possible concept understanding. 

Figure 3. Three-pass understanding process 

Unavoidable recognition errors and incompleteness of 
grammar might result in understanding errors. Our proposed 
approach provides a similar phrase-spotting ability as partial 
parsing does. The partial parsing approach is constrained to 
less range of syntactic information and can work efficiently 
and reliably as the complete parsing fails. However, it 
sacrifices completeness and depth of analysis [4][5]. On the 
contrary, the merged N-gram models in our approach possess 
the continuity of word sequences, instead of phrase sequences, 
over the whole sentence range in computing probabilities. 

An apparent difference exists between our approach and 
partial parsing: the former provide in the front-end speech 
recognizer both the chunk and word probabilities seamlessly 
in the merged N-gram model, while the later should perform 
in the back-end language understanding processing with fixed 
recognizer output word graphs or n-best sequences. 
Furthermore, sophisticated utilization of the recognized 
sentence pattern in our understanding process could be 
developed to enhance the sentence level analysis, which was 
disregarded in our preliminary study. 

3. Experiments 

Our system is composed of a segment-based speech 
recognizer SUMMIT [15] and a natural-language 
understanding system TINA [9] for spoken languages. The 
acoustic model for SUMMIT is trained using Mandarin 
telephony speech corpora MAT-2000 [16], while language 
modeling of N-grams for SUMMIT and of SCFG for TINA 
using 2,928 utterances collected through the Mandarin 
Mercury system. Vocabulary of the recognizer has 2,424 base 
words in 186 base categories. 

Our language model training set was annotated with the 
mentioned concept information manually in the experiments. 
Statistics of the data is summarized in Table 1 and 2. The 
training set was divided into two sub-sets: Set A is composed 
of sentences with <route> and/or <time> chunk phrases, while 
Set B of neither.  The average length of Set A is 5.59 words 
per sentence, which is 1.6 times of that of Set B. After 
decomposing target phrases, the average length of sentences 
decreases to 3.17. The average lengths of <time> and <route> 
phrases are 3.15 and 2.85, respectively. It shows that 
decomposition of the utterances into phrases might largely 
shorten them and probably provide an easier framework in 
developing of the grammar and collecting the corpora. 

Table 1. Statistics of the training utterances 

Set A Set B 
#Utterance 1,980 948 

Word / sent. 5.59 3.53 

Table 2. Statistics of Set A 

<route> <time> Abstr-form
#Utterance 1,358 1,059 1,980 

Ave. #Word 2.85 3.15 3.17 

A set of 3,389 utterances is used as the test set. The 
baseline system uses conventional category-based trigram 
modeling and complete parsing strategy (called ‘one-pass’ in 
the paper). Its performance is listed in Table 3: toneless 
syllable error rate (SER) 11.92%, concept error rate (CER) 
21.00% and parsing failure rate (PFR) 10.24%. 

Table 3. Conventional trigram modeling (baseline) 

(%) SER PFR CER Rel. Impr.
1-pass 11.92 10.24 21.00 - 

3.1. Experiments using conventional trigram modeling 

A conventional trigram modeling is experimented here based 
on the annotated training sentences with additional chunk and 
attribute information. The results were used for a comparison 
to the proposed two-layer organization of corpora for trigram 
modeling, which is shown in the next subsection.  

Table 4. Conventional trigram modeling, attributed words 

(%) SER PFR CER Rel. Impr.
1-pass 12.11 10.30 21.06 -0.3 
2-pass 12.11 4.90 18.66 +11.1 
3-pass 12.11 2.54 18.21 +13.3 

The SER in Table 4 is larger than that of the baseline in 
Table 3, probably due to the enlarged vocabulary and data 
sparseness. The second-pass parsing dropped PFR from 
10.39% to 4.90%. The huge drop of PFR might contribute to 
a relative 11.1% CER reduction. The chunk information 
generated from the speech recognizer seemed helpful. The 
joint phrases, by excluding the words outside the <route> and 
<time> chunks, were largely accepted by the same grammar 
and parser. The third pass of understanding process did help a 
big drop of PFR but not in CER. Its concepts understood 
showed much less accuracy contribution than that of the 
second pass. Probably, the lexical attribute attachment had 
limited adjacent contextual dependency accounts for its less 
confidence in understanding. 
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3.2. Experiments using two-layer trigram modeling 

Here are the major experiments of the proposed approach. 

Table 5. Two-layer trigram modeling, attributed words 

(%) SER PFR CER Rel. Impr.
1-pass 11.30 5.02 16.18 +23.0 
2-pass 11.30 2.63 14.75 +29.8 
3-pass 11.30 0.77 14.12 +32.8 

The proposed two-layer organization of corpora 
contributed to a better N-gram model for the speech 
recognizer. Both the SER and CER of the one-pass parsing 
showed significant improvements of relative 5.2% and 23.0% 
error rate reduction, respectively. The second pass parsing 
accounted for a significant PFR reduction, similar to the result 
in previous subsection, and accounted for relatively 29.8% 
error rate reduction. Comparing to the two-pass performance 
in the Table 4, the two-layer trigram modeling gained more 
improvement than the conventional trigram modeling did. 
That encourages the collection of separated chunk corpora in 
composing of spoken dialogue systems.  

The following two reasons might explain the significant 
improvement by using the proposed two-layer trigram 
modeling. Firstly, the trigram model might be well trained 
within the scope of the phrase layer by the constraint of a 
smaller vocabulary size and in a shorter context range. In 
addition, the trained trigrams of word sequences across chunk 
phrases were influenced by the trigrams in the sentence-
pattern layer, which possessed longer distance dependency. 

Importantly, the use of chunk structure probably provides 
an efficient way in developing spoken dialogue applications. 
The reusability of the knowledge in the grammars and the 
information in the corpora is one of the major concerns. The 
proposed approach provides a way of flexibly reusing them 
because of its shorter context range. Like the time chunk, both 
the time corpus and the time grammar would be well adopted 
by another applications concerning about time information. 
Besides, the proposed trigram modeling is still mainly based 
on data-driven approach, so as to rely less on the experts for 
grammars. Collection of the phrase sets across applications 
may make it more mature and enhance the efficiency of 
system development. 

4. Conclusions 

In the paper, we experimented the integration of multiple 
layers of concept information, including both chunk phrases 
and lexical attributes, into trigram modeling for spoken 
language understanding. It outperformed the conventional 
way by more than 30% concept error rate reduction in our 
Mandarin Mercury system. Firstly, it provides a robust way to 
spoken language understanding by parsing phrases instead of 
full sentences. Like partial parsing, it outperforms the 
complete parsing and salvages lots of parsing failures. 
Secondly, it improves the recognition performance by 
smoothing away the data sparseness problem via the 
construction of two-layer organization of corpora for N-gram 
modeling. Finally, via the more reusable chunk phrase 
grammars and corpora the effectiveness and efficiency of 
system development could be enhanced. 
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