
AN EFFICIENT ALGORITHM FOR CLUSTERING SHORT SPOKEN UTTERANCES

Zhu Liu

AT&T Labs - Research
200 Laurel Ave South
Middletown, NJ 07748
zliu@research.att.com

ABSTRACT

Nowadays, spoken dialogue systems which provide auto-
mated customer service at call centers become more preva-
lent. It is time consuming to determine a set of call types for
the dialogue system by analyzing a large volume of unstruc-
tured spoken utterances. Traditional hierarchical agglom-
erative clustering (HAC) algorithm can bootstrap the call
types in an unsupervised way, yet the time and space com-
plexities are huge, especially for large data set. Based on
our observation that spoken utterances containing less than
ten terms are common in the spoken dialogue system, we
proposed an efficient HAC algorithm for short utterances.
By utilizing the particular properties of short utterances, we
significantly reduced both the time and the space complexi-
ties of the clustering algorithm.

1. INTRODUCTION

The use of spoken dialogue systems to automate customer
services in call centers is continually expanding. In one
such system, unconstrained speech recognition is used in
a limited domain to direct call traffic in customer call cen-
ters (Gorin et al [1]). The challenge in this environment is
not only the accuracy of the speech recognition but more
importantly, how the spoken utterances are mapped to the
right call types in the spoken dialogue system. For exam-
ple, a reasonable call type of an utterance “I need to refill
this prescription.” in a pharmaceutical application is “Re-
quest(Refill)”.

Determining the right set of call types based on a large
volume of utterances demands knowledge and understand-
ing of the business logic and operation as well as a time
consuming procedure of analyzing all the unstructured ut-
terances. Traditional hierarchical agglomerative clustering
algorithm can bootstrap the call types in an unsupervised
way, yet the time and space complexities are huge, espe-
cially for large data set. Fortunately, we can improve the
traditional HAC, and make it more efficient for spoken dia-
logue system, where the utterances are normally short.

Many clustering algorithms can be found in an excel-
lent reviewing paper by Jain et al [2]. Guha et al [3] intro-
duced the HAC algorithm CURE (Clustering Using REpre-
sentatives). CURE represents a cluster by a fixed number
of points scattered around it, which makes the algorithm in-
sensitive to the outliers and more efficient for large data set.
Karypis et al [4] proposed the Chameleon algorithm, a hier-
archical clustering using dynamic modeling. A key feature
of Chameleon algorithm is that it accounts for both inter-
connectivity and closeness in identifying the most similar
pair of clusters. Both CURE and Chameleon are noteworthy
extensions for traditional HAC, but the clustering results are
normally different from those of traditional HAC. The goal
of our work is to achieve the same clustering result as the
traditional HAC, yet more efficiently.

Clustering techniques have been widely applied in cat-
egorizing web pages, emails, news, etc., for a long time.
Franz et. al [5] investigated both unsupervised and super-
vised clustering in the context of NIST’s Topic Detection
and Tracking (TDT) project, which explores automatic tech-
niques for locating topically related materials in newswire
and broadcast news [6]. Different from these tasks, the ut-
terances in our task typically contains less than ten terms,
much smaller than web pages, emails, or newswire, which
normally comprise hundreds of terms. Short documents
may deteriorate the clustering performance since the ex-
tracted statistics are less reliable. Yet, they enable us to
significantly increase the efficiency of the HAC algorithm.

The paper is organized as follows. The traditional HAC
algorithm is briefly described in Section 2, and we propose
an efficient HAC algorithm for short utterances in Section
3. Experimental results are shown and discussed in Section
4. Finally, in Sections 5, we draw out conclusions.

2. TRADITIONAL HAC ALGORITHM

In this section, we briefly describe the three issues involved
in an HAC algorithm: feature extraction, utterance/cluster
distance measurement, and the clustering procedure.

At the simplest level, individual words can be used as

I - 5930-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

features. Other methods for deriving features include us-
ing N-grams as features, weighting features based upon the
number of times a word appears in an utterance or how un-
usual the word is in the corpus, and performing word stem-
ming. In our case, we use features that are invariant to word
position, word count, and word morphology, and we ignore
noise words. Each utterance is converted into a feature vec-
tor, which is an array of term weights. To ease the subse-
quent processing, we normalize all vectors to unit norm.

The distance of two utterances is defined as the cosine
distance between corresponding feature vectors. Assume x
and y are two feature vectors, the distance d(x,y) between
them is d(x, y) = (x · y)/(‖x‖ · ‖y‖). Considering that all
vectors are normalized, the utterance distance is simplified
as d(x, y) = x · y. The cluster distance is defined as the
maximum distance between any pairs of two utterances, one
from each cluster. The range of utterance distance is from 0
to 1, and the range of the cluster distance is the same.

The details of HAC algorithm can be found in [7]. The
following is a brief description of the procedure. Initially,
each utterance is a cluster on its own. Then, for each it-
eration, two clusters with a minimum distance value are
merged. This procedure continues until the minimum clus-
ter distance exceeds a preset threshold. The principle of
HAC is straightforward, yet the computational complexity
and memory requirements are huge, especially for large data
sets. Assuming that there are N utterances, direct imple-
mentation of HAC requires O(N2) memory for storing the
utterance distance matrix and cluster distance matrix, and
the runtime complexity is O(N3).

3. IMPROVED HAC CLUSTERING ALGORITHM

We developed an efficient implementation of HAC by on-
the-fly cluster/utterance distance computation and by keep-
ing track of a list of neighboring clusters for each cluster,
such that the memory usage is effectively reduced and the
speed is significantly increased.

3.1. Observations for short utterances

Given that the average size of the utterances is small (10
terms) compared to the feature dimension (10,000 words),
there is an efficient way to compute the distance between
two utterances. The distance between two utterances can
be computed by checking only the non zero terms of cor-
responding feature vectors. So instead of maintaining the
huge utterance (resp. cluster) distance matrix, we compute
the utterance (resp. cluster) distance on-the-fly, such that
the memory usage is effectively reduced to O(N).

Another interesting phenomena is that when the utter-
ances are short, most pairs of utterances share no common
terms, and their distance is 1.0. Consequently, for each clus-

ter, most of the distances from other clusters are 1.0. This
means that for each cluster, we only need to track a few
neighboring clusters. Instead of searching the nearest pair
of clusters among all pairs of clusters (O(N2)) at each itera-
tion, we keep track of a list of neighboring clusters for each
cluster, and search the nearest neighbor for each cluster. The
searching complexity is reduced to O(N). The overhead is
the maintenance of the neighboring cluster lists for all clus-
ters. In later section, we will show that the maintenance for
short utterances is not expensive.

3.2. Improved HAC clustering

Figure 1 shows the procedure of the proposed algorithm.
For a set of N utterances {ui, i = 1, ..., N}, we first com-
pute their feature vectors, and normalize them. Two major
steps followed are initialization and core clustering proce-
dure. At the initialization step, each utterance ui is assigned
to a cluster Ci by itself. For each cluster Ci, the distances
from the other clusters are computed and sorted to find a list
of K nearest clusters NCi = {NCk

i , k = 1, ..., K}, and
their distances CDi = {CDk

i , k = 1, ...,K}. Obviously,
the nearest cluster to cluster Ci is cluster NC1

i .

Fig. 1. Diagram of the improved HAC algorithm.

The core clustering procedure is an iterative procedure,
where two closest clusters are merged at each iteration. If
the distance is less than a preset threshold, we merge the two
clusters, and update all neighboring cluster lists NCi and
their distances CDi. Otherwise, the iteration terminates,
and the clustering result is achieved. There are two situa-
tions while we update NCi and CDi for cluster Ci. If none
of the merged clusters belong to the list, we don’t need to
do anything. For short utterances, this is true for most clus-

I - 594

➡ ➡

ters. If either one of the merged clusters was included in
the neighboring cluster list, we need remove it, and com-
pute the distance between Ci and the merged cluster. If the
distance is smaller than the largest distance in CDi, we in-
sert the merged cluster in the right slot of the neighboring
cluster list, otherwise, the merged cluster is not considered
as a neighbor of cluster Ci. During the update procedure,
the size of neighboring cluster list might decrease. But only
when the list is empty, a new list of K nearest neighbors and
their distances for the cluster will be regenerated. The end
result of the algorithm is a tree of clusters called a dendro-
gram, which shows how the clusters are formed.

In Fig. 1, we highlight the block of neighboring clus-
ter list update, which is most computation intensive. The
complexity of list update for each cluster is determined by
whether a new list of neighboring cluster need to be regen-
erated or not. When K is bigger, it is less probable to gener-
ate a new list of neighbors, but we need to maintain a longer
list. When K is smaller, more likely, we need to regenerate
a new list of neighbors, but we spend less time in maintain-
ing a shorter list. There is a tradeoff to set the value of K.
The real complexity the algorithm depends on the data, but
the lower boundary is kN2, which corresponds to the sit-
uation that there is no need to regenerate any neighboring
cluster lists, but only updating the existing ones.

Depending on the distance threshold chosen in the clus-
tering algorithm, the clustering results may either be con-
servative (with small threshold) or aggressive (with large
threshold). In real applications, we tend to set a relatively
low threshold to make sure each cluster is homogeneous.
For short utterances, HAC may produce a large number of
clusters since many utterances are totally different than the
others. To reduce the number of tiny clusters, we merge
all clusters smaller than an established minimum size into a
special “other” cluster.

4. EXPERIMENTS

The data used in this paper is collected from AT&T Voice-
Tone spoken dialogue applications in four industrial domains,
including financial, health care, insurance, and retail. Fig-
ure 2 shows the distribution of the feature vector length for
a set of 4000 utterances in financial domain. 92% utterances
are shorter than ten terms after feature extraction. Figure 3
shows the the effect of the size of neighboring cluster list
on the time cost of the algorithm. The test is run on a data
set with 10,000 utterances from financial domain, and the
tested values of K are 4, 8, 16, ..., 512. The distance thresh-
old is set to 0.99. Obviously, the curve shows the tradeoff
of K in term of the computation complexity. When K is
too small or too big, the complexity is high, and when K
is in the middle (in this case, 128), the least complexity is
achieved, which costs 123 seconds.

Fig. 2. Histogram of utterance vector length.

Fig. 3. Effect of the size of neighboring cluster list.

Table 1 shows the computation time and memory usage
for traditional HAC and our improved algorithm. We com-
pared them on two data sets: one contains 5,000 utterances,
and the other 20,000 utterances, all from financial domain.
The size of neighboring cluster list (K) is set to 128, and we
set the distance threshold to 0.99. For the first data set, the
direct HAC implementation requires 4 hours to complete
and uses 200 MB memory, yet the improved implementa-
tion only takes 15 seconds and requires 8MB memory. For
the second data set, we only provide the results for the im-
proved implementation, and the memory usage for the direct
implementation. We did not measure the computation time
since it takes too long - a reasonable estimate is about 250
hours.

4.1. Clustering performance evaluation

We use the purity concept explained in [8] to evaluate clus-
tering performance. The two measurements are the average

I - 595

➡ ➡

Number of Utterances
Implementation 5,000 20,000

Time Memory Time Memory
(MB) (MB)

Traditional HAC 4 Hour 200 N/A 3200
Improved HAC 15 s 8 540 s 30

Table 1. Clustering algorithm complexity.

cluster purity (ACP) and the average call type purity (ATP),
as explained below. First, we define the following symbols.
nij : total number of utterances in cluster i with call type j;
NT : total number of call types; NC: total number of clus-
ters; N : total number of utterances; n.j : total number of
utterances with call type j; ni.: total number of utterances
in cluster i. Then the purity of a cluster pi. and the the ACP
can then be defined as:

pi. =
NT∑

j=1

n2
ij/n2

i., ACP =
1
N

NC∑

i=1

pi.ni..

Similarly, the call type purity p.j and the ATP are calcu-
lated as:

p.j =
NC∑

i=1

n2
ij/n2

.j , ATP =
1
N

NT∑

j=1

p.jn.j .

The ATP measures how well the utterances of one call
type are limited to only one cluster, and the ACP measures
how well the utterances in one cluster are within the same
call type.

We evaluated the clustering performance for four indus-
trial domains mentioned before. To cope with the multiple
call types problem, we only consider the single call type
utterances in the evaluation. Each data set consists 3000 ut-
terances, and their call types are manually labeled. Table 2
shows the results. In the evaluation, we set the clustering
distance threshold to 0.6, and the minimum cluster size to
5.

Data NC NT ATP (%) ACP (%)
Financial 36 335 23.2 71.2

Health care 92 133 45.6 61.3
Insurance 51 279 25.4 60.2

Retail 31 131 35.8 70.2

Table 2. Clustering performance for four applications.

Across the four applications, the ACP’s are in the same
range, roughly 60 − 70%. The ATP’s are quite different
among the different applications. Generally, when the num-
ber of call types is larger, the ACP will be smaller, and when

the number of clusters is larger, the ATP will be smaller. For
the health care and insurance applications, the numbers of
call types are large, so their ACP’s are small. For finan-
cial and insurance applications, the numbers of clusters are
large, and their ATP’s are small.

The call types for different applications are determined
by analysts based on their knowledge and on the business
problem to be solved. Therefore, the number of call types
may not uniformly reflect the scattering in the data sets. The
clusters are determined in a systematic way and they more
reliably indicate the structure of the data sets. For example,
the financial application has 36 call types but it does not
mean that the data set is homogeneous. Actually it is not
homogeneous since there are a large number of clusters.

5. CONCLUSIONS

In this paper, we proposed an improved clustering algorithm
for short spoken utterances. The clustering results serve as
a bootstrap for call type design in a spoken dialogue sys-
tem. The time/space complexity of the proposed approach
is significantly reduced, compared to traditional hierarchical
agglomerative clustering, though it still achieved the same
clustering outcome. The experimental result clearly demon-
strate the promise of the improved algorithm.

6. REFERENCES

[1] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may i help
you?,” Speech Communication, vol. 23, pp. 113–127, 1997.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323,
1999.

[3] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clus-
tering algorithm for large databases,” in SIGMOD, Seattle,
Washington, June 1998, pp. 73–84.

[4] G. Karypis, Eui-Hong Han, and V. Kumar, “CHAMELEON:
Hierarchical clustering using dynamic modeling,” IEEE Com-
puter, vol. 32, no. 8, pp. 68–75, Aug. 1999.

[5] M. Franz, T. Ward, J. S. McCarley, and W. Zhu, “Unsuper-
vised and supervided clustering for topic tracking,” in ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval, New Orleans, Louisiana, 2001, pp. 310–317.

[6] C. L. Wayne, “Multilingual topic detection and tracking: Suc-
cessful research enabled by corpora and evaluation,” in Lan-
guage Resources and Evaluation Conference (LREC), 2000,
pp. 1487–1494.

[7] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1988.

[8] I. Lapidot J. Ajmera, H. Bourlard and I. McCowan,
“Unknown-multiple speaker clustering using HMM,” in IC-
SLP, Denver, Colorado, 2002, pp. 573–576.

I - 596

➡ ➠

