<

RANDOM CLUSTERINGS FOR LANGUAGE MODELING

Ahmad Emami and Frederick Jelinek

Center for Language and Speech Processing
Johns Hopkins University
Baltimore, MD 21218
{emami, jelinek} @jhu.edu

ABSTRACT

In this paper we present an application of randomization tech-
niques to class-based n-gram language models. The idea is to de-
rive a language model from the combination of a set of random
class-based models. Each of the constituent random class-based
models is built using a separate clustering obtained via a different
run of a randomized clustering algorithm. The random class-based
model can compensate for some of the shortcomings of conven-
tional class-based models by combining the different solutions ob-
tained through random clusterings. Experimental results show that
the combined random class-based model improves considerably in
perplexity (PPL) and word error rate (WER) over both the n-gram
and baseline class-based models.

1. INTRODUCTION

The role of a statistical language model is to assign a probabil-
ity P(W) to any given word string W = wyws ... wy. This is
usually done in a left-to-right manner by factoring the probability:

P(W)=P(wiws...wp)=P(w1) [T, P(wi[Wy 1), (H

where the sequence of words wiws . .. w; is denoted by Wi . Ide-
ally the language model would use the entire history W; Lo
make its prediction for word wy. However, data sparseness is a
crippling problem with language models and therefore all practical
rnolglels employ some sort of equivalence classification of histories
Wt

P(W)mP(w1) [N o P(wg|@(WF 1)), 2

where ®(WF~') denotes the class of the word string
(w1 ...wk—1). However in most cases, even after using an equiv-
alence classification ®(-), there is still not enough data to reliably
estimate the conditional probabilities P (wy,|®(WF~1)). There-
fore, proper smoothing techniques need to be used to make sure
that the events not observed or rarely seen in the training data will
be assigned appropriate non-zero probabilities.

Research in statistical language modeling is in general con-
cerned with two fundamental problems: finding compact and yet
specific enough classification schemes, and developing powerful
smoothing (generalization) techniques. For a good review of dif-
ferent language modeling approaches see [1].

The most widely used language models are the so called n-
gram models where a word string Wlk ~1 is classified into word
substring W,f:i 41+ The n-grams models perform surprisingly
well given their simple structure, but lack the ability to use longer

This work was supported by the National Science Foundation under
grant No. IIS-0085940.

0-7803-8874-7/05/$20.00 ©2005 IEEE

I-581

histories for word prediction, and they still suffer from severe data
sparseness problems.

Class-based n-gram models have been shown to be helpful in
fighting the data sparsity problem. Their ease of use in imple-
mentation and deployment (e.g. in a speech recognizer’s decoder)
makes them one of the most commonly used models employed to
improve upon standard n-gram models. However, due to the short-
comings of the existing clustering algorithms as well as the non-
optimal assumptions made in the modeling, any class-based lan-
guage model can be thought of as a sub-optimal or *weak’ model.

In this paper we propose a random class-based language
model and investigate the use of randomization for class-based n-
gram models. The approach here is similar to that in Random
Forests [2, 3], although that work is in the context of decision
trees. Our proposed model is built as a combination of multiple
randomized class-based models where each of the individual ran-
dom models is constructed using a different random clustering.
To obtain the random clusterings we propose a few randomization
techniques to apply to a word clustering algorithm. By measuring
their distance from each other, the resulting random clusterings are
shown to be indeed different. Experimental results show that the
combined random class-based LM improve considerably in per-
plexity (PPL) and word error rate (WER) over both the baseline
word and class-based n-grams models.

This paper is organized as follows: In section 2 we describe
the class-based language models, briefly discussing some clus-
tering algorithms and a few modeling options, emphasizing the
exchange algorithm which is our clustering algorithm of choice
throughout the paper. In section 3, randomization techniques for
the clustering algorithm are proposed and described. Experimental
results are given in section 4 followed by discussion and a proposal
of future work.

2. CLASS-BASED N-GRAM MODELS

As mentioned in the previous section, one way to fight the data
sparsity of m-gram models is to use word equivalence classes. In
this framework, the history classification adopts the same Marko-
vian assumption as the n-gram models; that is the probability of
the current word wj, depends on only the last n — 1 previous
words. The generalization (smoothing) is achieved through the
use of classes. The intuition is that even if a certain word m-gram
does not appear in the training data, it is still quite likely that the
class m-gram is observed in the same data.

The word classification can be many-to-one or many-to-many,
alternatively referred to as hard and soft clustering respectively.
This paper deals only with the hard clustering case, where each

ICASSP 2005

word belongs to one and only one class. Aside from the hard or
soft clustering choice, there are two major issues in building class-
based LMs. The first issue is how the word classes are derived, and
the second one concerns the choice of the model structure given the
derived word classes.

There are a variety of methods for obtaining word classes. An
obvious choice is to use the syntactic category, or part of speech
(POS) tag of words to group them into classes. Alternatively, one
can obtain the word classes in a data-driven way using a statisti-
cal criterion, which in most cases (but not all) is the likelihood of
the training data. Statistically derived classes have been shown to
result in better class-based language models than the POS based
clusterings. There are quite a few different statistical algorithms
for building the word classes. In [4], an agglomerative algorithm
is used where class pairs are merged one at a time, with the start-
ing point being each word defining its own class. There are many
other statistical methods to derive word classes, discussion of all
of which is not in the scope of this paper.

In [5, 6], a non-hierarchical method, called the exchange algo-
rithm, is used to find the word classes maximizing the training data
likelihood. In our preliminary experiments we found the exchange
algorithm to perform no worse than the bottom-up maximum like-
lihood based method described in [4]. In fact, in addition to being
computationally more expensive, the bottom-up method still needs
the exchange algorithm to be performed on its final classes (nodes)
in order to achieve its best performance.

In the exchange algorithm it is assumed that the number of
classes are known and so there is a fixed set C of classes forming
a partitioning of the vocabulary V. The goal is to find a many-to-
one mapping M : V — (C that maximizes some given criteria,
which in our case is the likelihood of a given clustering data. Note
that the clustering data does not have to be the same as the training
data later used to estimate the class-based models. The exchange
algorithm reaches a local optimum by looping through each word
w in the vocabulary V', moving it tentatively to all the classes in
C, and assigning it to that class that results in the highest log-
likelihood of the clustering data. The procedure is then repeated
until convergence is reached.

We should note here that most class-based language models in
the literature share the same mapping M for all the positions in
the n-gram. In the few cases that mappings are different (e.g. [1]),
they are only distinguished by predicting and predicted positions,
and furthermore the position dependent mappings are found sep-
arately and independently of each other. It is also the case that
most clustering techniques use only bigram statistics to obtain the
classes ([6] is one exception). In our work we use the very general
case of trigram clustering where trigram statistics are used to find
three separate clusterings simultaneously. Algorithm 1 shows the
generalized exchange algorithm where three separate mappings
MO, M*, and M? are used for the predicted position and the two
predicting positions respectively. Unlike previous efforts in po-
sition dependent clustering, the algorithm derives the three map-
pings simultaneously; at any point in the algorithm, the update of
a given mapping (e.g. M) is dependent on the current state of the
two other mappings (M°, M?). The log-likelihood of the cluster-
ing data, maximized in step 7 of the algorithm, is given by:

T 10g(P(CRICE 5. CL_1)P(wr]CD)). A3)
where Cj = M’ (w;). To the best of our knowledge this is the first
time trigram statistics are used to find position dependent cluster-
ings. Note that one advantage of this generalized clustering is that
it can be used for smoothing any conditional probability model

Algorithm 1 Exchange Algorithm
1: Decide on a fixed number of classes for each position
2: Start with initial mappings M’ : V' — C*, i = 0,1,2
3: for each iteration do
4: for each word position i = 0,1,2 do
5 for each word w € V* do
6: move w tentatively to all classes in C?
7 assign w to class ¢ maximizing likelihood

where in general the vocabularies for different positions are not
the same.

Once the classes are obtained, they can be used in a variety
of methods to build a class-based language model. One model
structure commonly used is of the form P(wy|wg—2,wr—-1) =
P(C}|CE_5, Cr_1)P(wk|CY) (see [4, 6]), which is in fact the
model structure assumed in computing the log-likelihood in Equa-
tion 3. In [1], different class-based language models are examined
and it is shown that the model above does not produce the best
perplexity. Our preliminary experiments confirmed the same and
therefore we opt to use the following model throughout this paper:

~ 0 2 1
P(wglwg—2,wk—1)x P(Cylwg—2,C)_g,wr—1,Cf_1)X%

P(wilwy_2,C2_gwy_1,C5_1,C). 4

3. RANDOM CLUSTERINGS

As with any other word clustering algorithm, the exchange algo-
rithm is greedy in general and finds a clustering that is only locally
optimal. Also, the assumptions made in the modeling structure are
usually non-optimal and hence lead to a degradation of the model.
One such assumption for example is that each word belongs to only
one class which contradicts the fact that a word can have different
syntactic or semantic roles depending on the context. Given these
shortcomings, we can think of any class-based language model of
general from in Section 2 as an sub-optimal or weak model. In the
spirit of work in [2, 3], it should then be possible to combine many
random weak clusterings to obtain a more powerful model.

In this paper we obtain random class-based models by ran-
domizing the clustering algorithm while keeping the modeling
structure (Equation 4) fixed. We propose the following methods
for randomizing the exchange algorithm:

o random clustering data In this randomization technique, a
random subset of the original clustering data is used for
each random clustering set. In our experiments we use
a uniform distribution to randomly sample (with replace-
ment) trigram tokens from the original data until the sam-
pled data is of the same size as the original data. Note that
unlike the other randomization methods in this paper, ran-
dom data selection is not specific to the exchange algorithm
and can be applied to any other clustering or modeling tech-
nique.

e random vocabulary limitation In this method, the partic-
ipating words in the exchange algorithm are limited to a
random subset of the vocabulary at the start of each itera-
tion and for the duration of that iteration, only the words
belonging to the random subset are allowed to change class
memberships. This can be thought of as replacing V* at
step 5 of Algorithm 1 with a randomly chosen subset of a
given size. In our experiments we use the uniform distribu-
tion to sample random subsets half the size of the original

I-582

vocabulary. It is easy to see that limiting the vocabulary
leads to a linear decrease in the complexity of each itera-
tion and since experiments show that the total number of
iterations does not increase, this method can also be used
for speeding up the clustering algorithm.

e random initialization In this method, the initial mappings
M in step 2 of the algorithm are randomly chosen. The
random initialization works by assigning each word in the
vocabulary to a randomly chosen class through a uniform
distribution.

e combination All three randomization techniques above are
used in conjunction with each other.

e random number of classes Instead of deciding on a fixed
number in step 1 of the algorithm, the number of classes can
be chosen randomly so that each clustering will correspond
to a partitioning of the vocabulary with different number of
classes.

The final random class-based model is formed as a linear com-
bination of the individual class-based models built using each of
the random clusterings:

R
P(wp|wi—2, wg—1) = Z)\rpr(wk|wk—27wk—l) ©)

. 7‘=1 . ..
where P, (wy|wk—2,wr—1) is an individual class-based model
in the form of Equation 4, A, is the correspoding interpolation
weight, and R is the number of random clusterings.

4. EXPERIMENTS AND RESULTS

Our experimental setup is as follows: for perplexity results we
used the UPenn Treebank portion of the WSJ corpus. The corpus
is divided into training, held-out, and test sets containing 930k,
74k, and 82k words respectively. We used an open vocabulary
consisting of 10k words. The clustering data consists of the train-
ing data plus the held-out data.

The WER experiments consisted of the re-scoring of the V-
best lists output by a speech recognizer. We evaluated our models
in the WSJ DARPA’93 HUBI test setup with a 20k open vocabu-
lary. The test set is a collection of 213 utterances for a total of 3446
words. The trigram language model used by the speech recognizer
to obtain the IN-best lists was trained on 40M words. However, all
our models are trained on a 19M subset of this data. Interpolated
Kneser-Ney smoothing was used for all our models in this work.

In order to show that randomization can improve over even
the best individual class-based model, we proceed by finding the
best number of classes for each position. For this purpose we took
the exhaustive approach of trying many different partition sizes.
In the UPenn perplexity setup, we considered 64, 128, 256, 512,
1024, 2048, 4096, and 10000 classes for the predicting positions
-1 and _2, and 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 10000
classes for the predicted position _0. Of all the 8 x 8 x 10 = 640
configurations, the |C?| = |C"'| = 10000, |C°| = 64 setup gave
the best test set perplexity. The same configuration is also used for
the WER experiments. Note that in this setup there are no cluster-
ings in positions _2 and -1 and the class-based model in Equation 4
in reduced to P(Cj |wy—2, w—1) X P(wp|wg—2, wr—1,Ch).

Table 1 shows the perplexity results for the random class-
based model. Both training and held-out data were used for es-
timating the class-based models for getting the test set results,
while only the training data was used for the held-out perplexities.
Each randomization technique was used 100 times to give a set of

[random tech. held-out test held-out test |
3-gram - - 162 146
baseline - - 146.1 137.7
data 149.5+0.14 139.7+0.12 138.4 130.4

vocab limit 146.4+0.19 137.6+0.09 137.8 129.7
initialization 146.44+0.11 137.54+0.12 136.9 128.8
comb. (all above) 149.340.15 139.4+0.12 137.3 129.2
num classes 146.64+0.12 137.8+0.16 137.8 129.8

Table 1. UPenn Perplexity

model intp. weight

1.0 0.8 0.6 0.4 0.2
3-gram 139 | 139 | 13.8 | 13.8 | 134
class 133 | 133 | 13.1 | 134 | 133
random class | 13.0 | 129 | 129 | 12.8 | 13.2

Table 2. WSJ Word error rate

100 clusterings. Each of the random clusters was then used inde-
pendently to build a class-based model according to the equation
given above. The first two columns show the individual random
clustering perplexities for the different randomization techniques.
For example, 141.4 &+ 0.13 denotes that the 100 random clusters
formed by random initialization have in average a perplexity of
141.4 with a sample variance of 0.13. The rows ’data’, ’vocab
limit’, and ’initialization’ refer to the random data, random vocab
limitation, and random initialization methods respectively. The
row ‘comb.” denotes the case where all the aforementioned meth-
ods are used concurrently and the row 'num classes’ shows the
results for the random number of classes randomization technique
where the number of classes were drawn from a normal distribu-
tion with mean 64 and standard deviation 16. To combine the 100
individual class-based models, they were linearly interpolated with
equal weights (A, = 0.01). The results are shown in the last two
columns corresponding to held-out and test sets respectively. Find-
ing the interpolation weights on the held-out set did not result in
an improvement in test set perplexity. Furthermore, interpolating
the final combined model with the word trigram did not result in
any perplexity improvement over the combined model, showing
that unlike conventional class models, the random class-based LM
does not benefit from the word n-gram model.

The N-best re-scoring WER results are given in Table 2. The
three rows refer to word trigram, baseline class-based, and random
class-based models respectively. A set of 100 random clusterings
were obtained using the random initialization technique and the
final model was again in the form of Equation 5 (with A, = 0.01).
Each of the models is interpolated with the original N-best LM
scores at different values of interpolation weight. The original N-
best list by itself (intp. weight=0.0) will give a WER of 13.7%. It
can be observed that the random class-based models consistently
outperforms both the trigram and baseline class-based models.

4.1. Clustering Distances

In order to show that the clusterings obtained through the separate
runs of the randomized exchange algorithm are indeed different,
we use two clustering comparison methods to measure the distance
between the random clusterings.

The first of these measures, called Classification Error (CE),
is defined as the minimum number of words that have to change
membership in one clustering to make it equal to the other one [7].
Two clusterings are defined to be equal if they form the same par-
titioning over the vocabulary [7].

I-583

EEl whole vocab
BN 1K most freq

normalized CE

5 6 7
random clustering number

normalized VI

random clustering number

Fig. 1. Class distance across random clusterings

The second measure uses an information theoretic criterion
called Variation of Information (VI), to define the distance be-
tween a pair of clusterings as the amount of information lost or
gained when changing from one clustering to the other [8]. The
VI distance is bounded from above by log(|V|). Both the CE and
VI distances are symmetric and transitive, and are true metrics on
the space of clusterings.

Figure 1 shows the normalized CE and VI distances between
the first random clustering set with the the first 10 sets. The clus-
ters are from the UPenn perplexity setup and were created us-
ing the random initialization method. Since the exchange of rare
words among classes doesn’t change the likelihood significantly,
it is quite possible that the rare words were assigned arbitrarily
(without any statistical significance) to different classes in differ-
ent random clusterings. To make sure that the random clustering
are in fact different, the class distances were computed for only
the 1000 most frequent words as well. The CE and VI distance
measures are normalized by dividing them by vocab size |V| and
VI upper bound log(|V|) respectively, ensuring that the distances
for different (whole and 1K most frequent) vocabs are comparable.
The average normalized CE and VI distance between the possible
(*5°) pairs of the 100 random clusterings were found to be 0.53
and 0.37 respectively. As can be seen, in either whole vocabu-
lary or just the most 1000 frequent words cases, the randomization
results in clusterings that are quite different from each other.

5. DISCUSSION AND FUTURE WORK

We have developed a randomized class-based n-gram model
which improves considerably in perplexity and WER over both the
baseline word n-gram and class-based models. It has been shown
that randomization results in clusterings that are quite different
from each other. Combining the resulting class-based models re-
sulted in considerable improvements in the performance, showing
that the different clusterings represent uncorrelated interpretations
of the data. We tend to think of each of the individual random
clusterings as a different local optimum of the clustering criterion.
As a result, the randomization compensates for the greedy cluster-
ing algorithm and the rigid class-based model structure by allow-
ing multiple solutions to the clustering problem. For example the
problem of having a given word assigned to only one class is partly
overcome, since the word can take different class membership in
different random clusterings.

Figure 2 shows how the UPenn test perplexity changes as we
use more random class-based models. The clusterings were ob-
tained using the random initialization method. It can be seen that
perplexity tapers off very fast and that it is possible to get very
good performance with just 20 random sets.

It is interesting to note that all randomization techniques

136 - -

perplexity

o 20 40 60 80 100 120 140 160 180 200
number of random sets

Fig. 2. PPL evolution with increasing num of random sets

achieve more or less the same result. This further supports the
argument above that randomization works by providing different
local optimum solutions and that it doesn’t matter how these dif-
ferent points are reached.

An interesting observation is that, for a given randomization
method, all the individual random models have almost the same
perplexity, with a very small sample variance across them. A sim-
ple explanation is that all the local optimum points lie at the same
level in the log-likelihood surface. However, we believe that this
observation requires further investigation.

While the simple interpolation method we used in combining
the different random clusterings resulted in significant improve-
ments, we believe better results can be achieved by using bet-
ter combination methods, either at word probability model (e.g.
log-linear models), or by combining all the different clusterings to
build a single, though more complex, class-based language model.

6. REFERENCES

[1] Joshua Goodman, “A bit of progress in language modeling,”
Tech. Rep. MSR-TR-2001-72, Machine Learning and Applied
Statistics Group, Microsoft Research, Redmond, WA, 2001.

[2] Y. Amit and D. Geman, ‘“Shape quantization and recogni-
tion with randomized trees,” Neural Computation, , no. 9, pp.
1545-1588, 1997.

[3] Leo Breiman, ‘“Random forests,” Tech. Rep., Statistics De-
partment, University of California, Berkeley, Berkeley, CA,
2001.

[4] P. F. Brown, V. J. Della Pietra, P. V. de Souza, J. C. Lai, and
R. L. Mercer, “Class based n-gram models of natural lan-
guage,” Computational Linguistics, vol. 18, no. 4, pp. 467—
479, 1992.

[5] R. Kneser and H. Ney, “Improved clustering techniques for
class based statistical language modeling,” in Proc. of Eu-
rospeech, 1993.

[6] Sven Martin, Jorg Liermann, and Hermann Ney, “Algorithms
for bigram and trigram word clustering,” Speech Communica-
tions, vol. 24, no. 1, pp. 19-37, April 1998.

[71 A.Emami, “A class distance algorithm,” January 2003, CLSP
Research Note.

[8] Marina Meild, “Comparing clusterings by the variation of in-
formation,” in COLT, 2003.

I-584

I 2

