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ABSTRACT

Conventional techniques for spoken language identification
use variants of phone similarity and language model scor-
ing, which represent local phonetic constraints in spoken
language. In this paper, we explore the identification of Chi-
nese dialects which share the same written script and have
similar sound systems and syllable structures. As such, lo-
cal phonetic constraints do not provide enough discrimina-
tive information among the dialects. We propose to use La-
tent Semantic Analysis (LSA) to extract global features that
represent the high-order statistics in the co-occurrence of
sounds. The experiments show that we can achieve the best
performance by combining acoustic, n-gram language mod-
eling and LSA scores. An accuracy of 99.23% is achieved in
4-way classification tests using 20-second speech sessions.

1. INTRODUCTION

Among the more successful systems that have recently been
built for language identification (LID) are those that per-
form phone recognition followed by n-gram language mod-
elling (PRLM) [1]. Variations of this approach include us-
ing longer acoustic units [2] or integrating other types of
information from stress or articulatory models [3, 4]. Mean-
while, comparable performance has also been achieved with
LID systems based on large vocabulary continuous speech
recognizers (LVCSR) [5, 6].

LVCSR-based systems and PRLM are similar in that
they both generate feature scores by performing acoustic
matching followed by n-gram language model scoring. We
refer to such scores as local acoustic-phonotactic scores.
Building an LVCSR is a labor intensive process that requires
an extensive amount of language specific expertise. How-
ever, LVCSRs are more refined in that they apply lexical
constraints during the decoding process. Thus, they pro-
duce more plausible phone decodings that can translate to
better language identification performance. Our work ex-
plores the use of features easily derived from LVCSR-based
syllable decoders to distinguish between three closely re-
lated dialects of Chinese (Mandarin, Cantonese and Shang-
hai dialect).
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Fig. 1. Language Identification Architecture.

All Chinese dialects are syllabic languages. Thus it is
natural to use the syllable as the basic acoustic unit in decod-
ing. These dialects not only share a common written script,
but also share similar vocabularies and word usage patterns.
In some cases, a word may even have the same pronoun-
ciation in all three languages. These similarities make lo-
cal scores less effective as discriminative features. In this
paper, we introduce the use of Latent Semantic Analysis
(LSA) [7] towards capturing large span phonotactic infor-
mation within speech sessions in order to complement local
acoustic-phonotactic scores. Our experiments with 4-way
classification of 3 Chinese dialects and an out-of-language
(OOL) set with 6 other languages show that this fusion of
local and global features is extremely effective. We also in-
vestigate one method of improving the discrimination and
robustness of linguistic feature scores.

2. LANGUAGE IDENTIFICATION OVERVIEW

Fig. 1 shows a 4-way language identification system based
on an LVCSR (Abacus). Three LVCSRs are run in paral-
lel as syllable decoders, one for each dialect. The Abacus
speech recognizer, shown in Fig. 2, is a frame-synchronous
HMM-based LVCSR engine that employs class-based n-
gram language models. The signal processing front-end
emits MFCC feature vectors in accordance with the ETSI
standard. These cepstra are fed into two parallel acoustic
decoders employing acoustic models of different granular-
ity; a sharp acoustic model using three-state HMMs for a set
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Fig. 2. Speech Recognizer Architecture.

of tied-state context-dependant triphones, and a flat acoustic
model using broad classes of context independent phones,
in which similar phones (such as nasals, fricatives or plo-
sives) are put under the same class. A language decoder,
assisted by a bigram language model, performs n-best de-
coding on the syllable lattice output by the acoustic decoder.

2.1. Features Representing Local Constraints

Two types of feature scores are readily available as inter-
mediate outputs from the recognizer. Given an utterance
with K non-silent frames of speech with cepstral features
o1...oK , the acoustic confidence score is

C =
K∑

k=1

[
log P (ok|λ) − log P (ok|λ̄)

]
/K. (1)

which is a log likelihood ratio of acoustic observations be-
tween the sharp and flat acoustic models. Here, P (ok|λ)
is the probability of observing cepstral features ok in frame
k given the best matching phone sequence λ output by the
sharp acoustic model decoder and P (ok|λ̄) corresponds to
the probability for the flat model. Acoustic confidence mea-
sures how likely sounds in an utterance belong to a specific
language; a higher value indicates a better match.

A suitable linguistically-based score is the cross-entropy

HP (W ) = − 1
N

log
N∏

l=1

P (wl|w1...wl−1). (2)

Here, P ’s are n-gram probabilities from an appropriately
trained trigram language model, and W = (w1...wN ) is the
sequence of sounds for the best decoding of the utterance.
Cross-entropy measures how well a decoding matches a lan-
guage model, where a lower value indicates a better match.

2.2. Features Representing Global Constraints

Latent Semantic Analysis is a statistical technique which
uses a bag-of-words approach to derive concepts from term
co-occurrence data and perform classification [7, 8]. We
consider an analogous bag-of-sounds approach by utilizing
large-span phonotactic features for language identification,
by treating each syllabic sound as a term and each utterance
or set of utterances belonging to a dialect as a document.

Singular Value Decomposition (SVD) is used to compute a
set of basis vectors spanning the global phonotactic space
that captures large span phonotactic information.

First, the M by N term-document matrix T , for M dis-
tinct sounds occurring in N dialects, is constructed from
some training data. Each training utterance is decoded by
all three dialect decoders. Note that the decodings may con-
tain any of 3885 possible distinct tonal syllables from three
disjoint sets: 1391 from Mandarin, 1532 for Cantonese, and
962 for Shanghai Dialect. The elements of T are given by

Ti,j =
tf(ti, dj)√∑N
k=1 tf(ti, dk)2

· idf ′(ti), (3)

where the term frequency tf(ti, dj) is the number of oc-
currences of sound ti in the decodings of all training utter-
ances belonging to dialect dj . A modified version of inverse
document frequency is idf ′(ti) = log2

NP
N
k=1 nk(ti)

, where

nk(ti) is the proportion of training utterances from dialect
dk that when decoded contain the sound ti. Each element
Ti,j measures how much a particular sound ti contributes
towards the identification of a dialect dj , while the column
vectors of T represent each dialect as a collection of syllabic
sounds. Multiplying each row of T by idf ′ emphasizes the
contribution of less commonly decoded sounds which, intu-
itively, should be more discriminative when identifying the
language. Rearranging the SVD of T = U · S · V T yields
R · T = S−1 · UT · T = V T . Since V T is orthonormal,
the linear operator R has the effect of projecting the column
vectors Tj onto the orthogonal basis vectors V T

j , such that
V T

j s span the global phonotactic space and are as dissimilar
as possible with respect to the cosine similarity measure.

To classify a speech utterance X , we compute the vector
x of length M that represents its bag-of-sounds, and whose
elements xi are the number of times that sound ti occurs
in the three decodings of X . The cosine similarity measure
cos(R · x, V T

j ), indicative of the similarity between X and
dialect dj , is computed for each dialect. Information fu-
sion is achieved by combining the acoustic, cross-entropy
and LSA-based cosine similarity scores from each dialect
through a 3-layer multi-layer perceptron with 9 neurons in
the input layer, and a 4 neurons in the output layer (for each
dialect and OOL). The output neuron with the greatest acti-
vation represents the hypothesized language.

3. EXPERIMENTS

We trained three acoustic models using over 50 hours of
speech data per dialect. As Chinese dialects share a com-
mon written script, language models for each dialect are
trained from the same Chinese newspaper text corpus con-
taining 30 million sentences. Using pronunciation dictio-
naries for each dialect, we converted each word in the text
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Fig. 3. Cross Examination of Local Acoustic-Phonotactic Scores for Three Parallel Syllable Decoders.

corpus to the standard romanized spelling of its dialect pro-
nunciation, or native Pinyin. The converted corpus is used
to train three back-off trigram language models, which are
then used for cross-entropy evaluation. A similar process is
used to train the language model that assists decoding.

We assembled a test speech database independent from
the training database, with four categories: 3 Chinese di-
alects and an out-of-language (OOL) category with equal
contributions from 6 other languages (English, Minnan Di-
alect, Korean, Japanese, Spanish and German). Reference
transcripts of the test set include both newspaper and con-
versational style text. Short utterances from the same lan-
guage were randomly concatenated to generate longer ses-
sions with durations of 5, 10, 15 and 20 seconds. This
yielded 1500 speech sessions per category for each time du-
ration. Twenty percent of these speech sessions were with-
held for training LSA term-document matrices and neural
network classifiers, and the remaining sessions were used
for evaluation. The training approach with LSA is rather
robust; comparable performance can still be obtained when
only 1% of the data is used for training.

3.1. Feature Score Analysis

We studied the ability of each type of feature score to con-
tribute towards the identification task. Fig. 3 plots the sepa-
ration of acoustic and cross-entropy scores from different
language decoders for Chinese dialects. The plots illus-
trate that acoustic and linguistic scores vary independently,
and thus provide complementary and orthogonal informa-
tion. Each dialect decoder easily distinguishes its own di-
alect from other languages through a combination of low
cross-entropy and high acoustic confidence.

Syllable decoding is not perfect, and in the presence
of noise or speaker variation artifacts, increased decoding
errors (reflected by higher word error rate) reduce the dis-
criminative ability of cross-entropy scoring. This effect is
illustrated in Fig. 4, which plots the classification error rate
of Bayesian classifiers that use only cross-entropy scores.
The dotted lines estimate a bound for the minimum classi-
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LM only # syl. 5s 10s 15s 20s
Tonal Syl. 3885 55.5 68.1 76.3 80.8
Toneless Syl. 1578 62.2 75.2 82.4 87.7

Fig. 5. Performance Improvement with Toneless Syllables.

fication error that can be achieved with the test data, by us-
ing cross-entropy scores evaluated over their reference tran-
scripts. One way to alleviate this effect is to merge tonal syl-
lables into toneless syllable classes for cross-entropy scor-
ing. There are 1391, 1532 and 962 tonal syllables and 404,
612 and 562 toneless syllable classes in Mandarin, Can-
tonese and the Shanghai Dialect respectively. Since con-
fusable tonal syllables now map to the same toneless class,
discrimination with cross-entropy scores is improved. This
improvement is shown in Fig. 5 for 4-way classifiers that
use only the cross-entropy (LM) score.

3.2. Classification Experiments

We compared the performance of 4-way classifiers using
any combination of acoustic (AM), cross-entropy (LM) and
latent semantic (LSA) scores. In this experiment, cross-
entropy and latent semantic feature scores were computed
with toneless syllable sequences. Fig. 6 shows the average
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Fig. 6. Classifier Performance for Different Feature Types.

accuracy for speech sessions of 5 to 20s durations.
A Naı̈ve Bayes classifier [9], which assumes that each

occurrence of a sound in the decoding is independent of
other sounds, computes the probability of utterance X (de-
coded as K distinct sounds {x1...xK}) belonging to lan-
guage d as P (d|X) =

∏K
i=1 P (xi|d)P (d)/

∏K
i=1 P (xi). A

hybrid Naı̈ve Bayes classifier that uses K-Nearest Neigh-
bours as a fallback (NB-KNN), produced similar results as
LSA when trained and tested on the same bag-of-sounds
features, thus verifying the LSA approach. The discrimina-
tive power of LSA is also testified by the fact that, among
the two-feature fusion tests, AM+LSA provides the best
performance. Furthermore, the combination of any two type
of features outperform single feature type systems, and com-
bining all three feature types give the best performance of
all, demonstrating that local and global features capture com-
plementary and orthogonal information with good discrim-
inative ability for language identification.

4. CONCLUSION

We have presented an approach to Chinese dialect iden-
tification by fusing scores that represent local and global
constraints of sound systems that can be extended to the
identification of more diverse languages. It is shown that
local and global features are complementary in providing
language specific evidence, and they are appealing in their
own ways. Furthermore, global features derived from bag-

of-sounds separate the three dialects well in both LSA and
Naı̈ve Bayes classifier experiments. The accuracy of this
approach can be further improved by merging confusable
tonal syllables into toneless classes.

Looking forward, it will be interesting to compare LSA
with different high-dimension vector classifiers such as sup-
port vector machines. It will also be worthwhile to use a
unified syllable decoder that has syllable sounds from all
three dialects instead of parallel decoding.
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