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ABSTRACT

Phonetics and prosody are two important factors in auto-
matic language identification. Prosodic HMMs enable lan-
guage identification systems to use prosodic information in
a similar manner to phonetic HMMs. This paper describes
how to create prosodic HMMs and implement them in lan-
guage identification systems. Linear discriminant analysis
of the likelihood and N-gram scores of prosodic segment
recognition realizes fast and reliable language identifica-
tion. Moreover, combining prosodic HMMs with phonetic
HMMs improves system performance. In this framework,
feature normalization techniques that were originally devel-
oped for robust speech recognition can be applied to pho-
netic and prosodic features. Language identification accu-
racy increases using these techniques in clean and noisy en-
vironments.

1. INTRODUCTION

Automatic language identification (LID) systems identify
the language using phonetic and/or prosodic information ex-
tracted from input speech. Recent successes in automatic
speech recognition have established a way to analyze pho-
netic information using Hidden Markov Models (HMMs),
which were also used in many LID systems. In contrast,
prosodic information is used in a simple way, and the pre-
cise dynamics of prosody has been largely ignored. In this
paper, we will introduce prosodic HMMs, and apply them
to English, Japanese, and Mandarin Chinese LID systems in
a similar manner to phonetic HMMs.

In the previous studies [1, 2], prosodic information was
statically processed, and the frame or segment-based likeli-
hood scores were simply accumulated over an utterance. In
contrast, Adami et al. [3] proposed a new approach that to-
kenizes the prosodic segment. They classified prosodic seg-
ments using ad-hoc rules about the power and fundamental
frequency (F0). In their work, the phonotactic approach was
extended to prosody, taking inter-segmental dynamics into
account. However, the intra-segmental dynamics has not

yet been considered. Therefore, we will introduce prosodic
HMMs for classifying the prosodic segments dynamically.

In the case of phonetic HMMs, parallel phone recog-
nition (PPR) and parallel phone recognition followed by
language modeling (PPRLM) [4] are two well-known al-
gorithms. In this paper, we will show that prosodic HMM
realizes the implementation of prosody-based LID analo-
gous to PPR and PPRLM. Moreover, when the PPR- and
PPRLM-based approaches for phonetic and prosodic fea-
tures are combined, the system performs more effectively.

Another benefit of prosodic HMM is that feature nor-
malization techniques for phonetic HMM can be applied to
them. We will demonstrate that mean and variance normal-
ization (MVN) and delta-cepstrumnormalization (DCN) im-
prove LID performance, especially under noisy conditions.

The remainder of this paper is organized as follows. In
the next section, we will describe the creation of prosodic
HMMs. Section 3 describes how to implement the com-
bined LID system using phonetic and prosodic HMMs. In
Section 4, we will describe feature normalization techniques
applicable to both phonetic and prosodic features. Section
5 presents experimental results, and the final section gives
conclusions and future works.

2. PROSODIC HMM

Iwano et al. [5] proposed prosodic HMM for robust speech
recognition, where they used fixed categories defined by the
F0 transition pattern. In this paper, we use a data-driven
clustering technique to create language-dependent prosodic
HMMs. The number of categories can be chosen arbitrar-
ily. Since it is difficult to obtain multi-language corpora
with prosodic labels, we created prosodic HMMs by unsu-
pervised training. A similar approach was used by Nagara-
jan et al. [6] to create phonetic HMMs of syllable-like units.
A more detailed description of HMM creation follows.

First, the training data of each language are segmented
into frames. Common frame length and rate values are used
in phonetic and prosodic processing. For each frame, the
power, F0, and reliability of the F0 estimate form a feature
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vector. The cepstrum method is used to estimate F0, where
the cepstrum peak and its intensity in the 40- to 500-Hz re-
gions are regarded as F0 and its reliability. Therefore, F0 is
set even in unvoiced regions, but its reliability has a small
value. Next, these feature vectors are concatenated for 2N
frames to form a larger feature vector of 6N elements. Here,
N is the number of states in a prosodic HMM. It is assumed
that the average duration of a state is two frames. Therefore,
the elements of the two neighboring frames are averaged,
resulting in 3N elements in a feature vector: power, F0, and
F0 reliability of N states. Finally, the first and second or-
der time-derivatives of these features are added to increase
the dimension to 9N. These feature vectors are clustered to
make initial HMMs using the K-means algorithm. The out-
put probability of each state is expressed by a single Gaus-
sian probability density function. The transition probabili-
ties are set to 0.5 for self and next transitions.

After creating the initial HMMs, they are used to decode
the training data, and the first transcription is obtained. The
first transcription is used for the first run of Viterbi train-
ing to make the second HMMs, and these procedures are
repeated for a pre-defined number of times. This is the
end of the prosodic HMM creation for one language, and
the same procedure is executed for other languages. As
for the phonetic HMMs, standard training is carried out for
each language using phonetically labeled corpora. We also
make prosodic/phonetic N-gram language models by de-
coding the training data using prosodic/phonetic HMMs.

3. COMBINED LID SYSTEM

Prosodic HMMs and phonetic HMMs are combined in a
simple manner as shown in Fig. 1. The LID system consists
of a feature extraction module, three language-dependent
scoring modules for English (ENG), Japanese (JPN), and
Mandarin (MND), and a linear discriminant analysis (LDA)
module. The feature extraction module extracts the MFCC
and prosodic features (and their time derivatives), and sends
them to the scoring modules. In the scoring module, the
phone recognition unit converts the feature vectors into a
phone sequence using phonetic HMMs, where a phonetic
likelihood score is obtained at the same time. The phone
sequence is evaluated by the phonetic N-gram to provide a
phonetic N-gram score in the same manner as PPRLM in
[4]. The prosody recognition unit works in a similar fash-
ion, providing a prosodic likelihood score and a prosodic N-
gram score. Thus, the three scoring modules give 12 scores
in total, all of which are fed into the LDA module. This
module makes the final decision using these scores.

There are various ways of making the final decision from
a set of LID scores. Some examples of fusing algorithms are
described in [7]. In this work, we applied a statistical fusion
technique, based on linear discriminant analysis in two do-
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Fig. 1 System overview.

mains, phonetics and prosody. In each domain, any pair of
languages are discriminated using both N-gram and likeli-
hood scores. Five discriminant coefficients (for N-gram and
likelihood scores of two languages, plus a threshold) are cal-
culated for each pair using the development data, and a dis-
criminant score is computed for a test utterance using these
coefficients. Then, the discriminant score in the phonetic
and prosodic domains are added, and a decision is made for
the pair.

When decisions are made for all pairs, a final decision
must be made. The decisions are consistent in most three-
language LID cases (one language beats the other two), but
if there is any inconsistency between decisions, we apply an
ad-hoc rule where the language that has the largest winning
score becomes the final output.

4. FEATURE NORMALIZATION

We know that robustness in speech recognition systems can
be achieved by applying some feature normalization tech-
niques. Both cepstrum mean normalization (CMN) and mean
and variance normalization (MVN) are popular. Recently,
we proposed delta-cepstrumnormalization (DCN) [8], which
is a nonlinear transformation of cepstral coefficients using
the cepstra and delta-cepstra histograms. It is known to
be effective especially under noisy conditions. It is reason-
able to expect that applying these algorithms to the phonetic
features would improve the LID system performance. Fur-
thermore, these algorithms may be applicable to prosodic
features. If these algorithms can reduce irrelevant infor-
mation such as personality and environmental fluctuations,
LID performance would be improved.

I - 570

➡ ➡



 50

 60

 70

 80

 90

 100

 1  2  3  4  5

LI
D

 a
cc

ur
ac

y 
(%

)

# utterances

DCN
MVN
CMN

 50

 60

 70

 80

 90

 100

 1  2  3  4  5

LI
D

 a
cc

ur
ac

y 
(%

)

# utterances

MVN
DCN
CMN

Fig. 2 LID accuracy of stand-alone systems.
(left) Phonetic HMMs. (right) Prosodic HMMs.

5. EXPERIMENTAL RESULTS

5.1. Databases and experimental setup

We created phonetic HMMs using phonetically labeled data-
bases. We used the LDC Wall Street Journal database for
English. For Japanese and Mandarin, we collected original
databases that consisted of phonetically balanced sentences
uttered by 120 (JPN) and 80 (MND) speakers. Prosodic
HMMs were trained using the same databases without any
labeling. The LDC Santa Barbara Corpus of Spoken Ameri-
can English and ASJ Japanese Newspaper Article Sentences
databases were used as development/test data. We collected
Mandarin development/test data that included free conver-
sations between two people. For each language, 2692 utter-
ances, with an average length of 3.0 seconds, were picked
up. These utterances were divided into development and
test sets, and we made experimental runs by switching their
roles. The final LID accuracy was given by averaging the
results. We also prepared noisy data by digitally adding the
noise data taken from the JEIDA noise database to the test
sets with SNR values of 0, 5, 10, 15, and 20 dB.

The phonetic HMMs consisted of 42 (ENG), 34 (JPN)
or 57 (MND) phoneme models. Each model had three states,
and each state had eight Gaussian mixtures. The prosodic
HMMs consisted of 20 prosodic segment models. Each
model had five states, and each state had one Gaussian dis-
tribution. We trained trigram language models for phonemes
and prosodic segments by deleted interpolation, using the
decoder outputs for the training data. The LDA parameters
were calculated using the development data, in which each
utterance contained only the language name label. Through-
out all the experiments, the speech input was sampled by 16
kHz, and 13 MFCCs and three prosodic features were com-
puted every 10 ms.

5.2. Stand-alone system experiments

The phonetic and prosodic HMM systems were first eval-
uated separately to study the contribution of each module
to the complete system. The results are shown in Fig. 2.
The LID performance for longer inputs was evaluated by
adding the scores of successive utterances, weighed by the

Table 1. Average execution time for a one-second speech.
Phonetic HMM Prosodic HMM

Feature extraction 0.022 s
ENG 0.110 s 0.015 s

Recog. JPN 0.086 s 0.015 s
MND 0.154 s 0.015 s

LDA less than 0.001 s
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Fig. 3 LID accuracy comparison of phonetic, prosodic,
and combined systems.

utterance length. Accordingly, the horizontal axis shows
the number of utterances used for each test. The vertical
axis represents the LID accuracy. Since the identification of
three languages was forced, 1/3 is the theoretical lower limit
of LID accuracy. We applied three feature normalization al-
gorithms, CMN, MVN, and DCN, were applied to both the
phonetic and prosodic features1. As the figure shows, apply-
ing DCN is helpful for phonetic HMMs, whereas it lowers
the accuracy in prosodic HMM systems. The comparison of
the best normalization algorithms revealed that the prosodic
HMM system was not superior to the phonetic HMM sys-
tem, but the LID accuracy can be as high as 85.8% when
using 15 second speech (3 sec * 5 utt).

The average execution time was also measured using an
Intel Pentium4 (2.66 GHz) processor running on the Linux
operating system. The results are shown in Table 1. Since
the number of models, the number of Gaussian mixtures,
and the feature dimension were small, the prosodic HMM
system was much faster than the phonetic HMM system.

5.3. Combined system experiments

Figure 3 shows the results obtained using the combined sys-
tem. Taking the results of stand-alone experiments into con-
sideration, we applied DCN to the phonetic features and
MVN to the prosodic features. The combined system had
an 84.1% LID accuracy for one utterance, which means a

1The terms CMN and DCN should not be normally used for prosodic
features because they are not cepstra, but we used them for convenience of
comparison.
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Fig. 4 LID accuracy of stand-alone systems under noisy
conditions. Accuracies are for one utterance (3 seconds on
average). (left) Phonetic HMMs. (right) Prosodic HMMs.
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Fig. 5 LID accuracy comparison of phonetic, prosodic,
and combined systems under noisy conditions.

26% error reduction from the phonetic HMM system. As
seen in Table 1, the execution time of the combined system
for a one-second speech was 0.417 sec. This is only 12%
longer than the time for the phonetic HMM system.

5.4. Noisy condition experiments

The proposed system was also evaluated under noisy con-
ditions using artificially created data. In these experiments,
we used the same LDA parameters calculated from the clean
development data. Figure 4 shows the LID accuracy of the
phonetic and prosodic systems. The horizontal axis repre-
sents the SNR, and all the results are for one utterance.

When applied to the phonetic features, DCN works ef-
fectively under noisy conditions, which is consistent with
the previous speech recognition results. The benefits of
MVN for the prosodic features decreases under low SNR
conditions, while DCN improves. Nevertheless, the overall
results suggest that the prosodic system is more vulnerable
to noise.

Figure 5 shows the results of the combined system. An-
other series of experiments was carried out using the com-
bined system in which DCN was applied to the phonetic
and prosodic features. The LID accuracy of the DCN-MVN
combined system, which was superior to the phonetic sys-
tem under clean conditions, drops as the SNR decreases.
However, the DCN-DCN combined system inherits the noise
robustness of DCN applied to the prosodic features, and bet-
ter results were obtained in SNR ranges between 5 to 20 dB.

6. CONCLUSIONS

In this paper, we proposed an LID system that uses prosodic
HMMs. The system has an advantage because it requires
no labeled corpus to create HMMs. The system is very fast,
and its performance is quite reasonable, with an 85.8% ac-
curacy in identifying three languages during approximately
15 seconds of speech. In addition, the combined system us-
ing phonetic and prosodic HMMs improves LID accuracy,
where a 26% error reduction from phonetic HMM systems
can be achieved with only 12% additional computation cost.

Feature normalization algorithms such as MVN and
DCN have proven beneficial for LID. The phonetic HMM
system was improved as in speech recognition systems.
More interestingly, in some cases, normalization of the
prosodic features also increased the LID accuracy.

Our experiments revealed that the prosodic HMM sys-
tem is vulnerable to noisy conditions, even if DCN reduces
the noise effect. Currently, F0 is estimated by a simple al-
gorithm, so a robust F0 estimation algorithm must be intro-
duced in the future to make our LID system more useful.
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