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ABSTRACT

Conventional methods for training statistical models for auto-
matic speech recognition, such as acoustic and language models,
have focused on criteria such as maximum likelihood and sentence
or word error rate (WER). However, unlike dictation systems, the
goal for spoken dialogue systems is to understand the meaning of
what a person says, not to get every word correctly transcribed. For
such systems, we propose to optimize the statistical models under
end-to-end system performance criteria. We illustrate this prin-
ciple by focusing on the estimation of the language model (LM)
component of a natural language call routing system. This estima-
tion, carried out under a conditional maximum likelihood objec-
tive, aims at optimizing the call routing (classification) accuracy,
which is often the criterion of interest in these systems. LM up-
dates are derived using the extended Baum-Welch procedure of
Gopalakrishnan et.al. In our experiments, we find that our estima-
tion procedure leads to a small but promising gain in classification
accuracy. Interestingly, the estimated language models also lead to
an increase in the word error rate while improving the classifica-
tion accuracy, showing that the system with the best classification
accuracy is not necessarily the one with the lowest WER. Signif-
icantly, our LM estimation procedure does not require the correct
transcription of the training data, and can therefore be applied to
unsupervised learning from un-transcribed speech data.

1. INTRODUCTION

Spoken dialogue systems are becoming an important means of
customer relations management over the telephone, having shown
great value in reducing costs as well as improving the customer
experience. Automatic speech recognition (ASR) systems used in
spoken dialogue systems are mostly based on statistical models; in
particular, the maximum a posterior rule is used to find the best

word sequence W for a given acoustic speech signal A:

P(AW)P(W)

P(A) (D

W = argmax P(W|A) = argmax
w w

where P(A|W) is the acoustic model, and P(W) is the language
model.

Traditionally, acoustic and language models have been trained
separately based on the maximum likelihood criterion. Because
the model assumptions are often incorrect and the amount of data
used to train the models insufficient, maximum likelihood train-
ing yields suboptimal solutions. Discriminative training of acous-
tic [1, 2] and language models [3] using the Maximum Mutual In-
formation (MMI) [4] or Minimum Classification Error (MCE) [5]
criteria often results in better speech recognition performance, in
terms of reduction in sentence or word error rates. There have
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also been attempts at adaptation of language models for spoken
dialogue systems [6, 7] but these also largely aim at reducing the
word or sentence error rate.

For dictation systems, a low word error rate could be an ap-
propriate goal to strive for. However, for spoken dialogue systems,
the goal is to understand what the caller is saying (e.g. asking
for information or to perform a transaction) rather than to get ev-
ery single word correct. Thus metrics such as concept accuracy
or classification accuracy may be more relevant criterion functions
that should be optimized.

As an example, we consider the case of natural language call
routing, where the goal is to automatically route a caller to the
agent with the best expertise to handle the problem described by
the caller in completely natural language, e.g. “hi there i was won-
dering um my car is kind of old and has been breaking down fre-
quently just wondering if you’ve got good rates.” This caller is
routed to the Consumer Lending Department; he/she was not re-
quired to know or remember the correct name of the department.
A common way of performing call routing is to train a statistical

classifier and route to the destination (or class) C' according to:

C = argmax P(Ck|A) ~ argmax P(C’HW), 2)
Ck Ck

where W is the output of the speech recognizer. Traditionally, the
classification model has been trained using maximum likelihood
or heuristics popularly used in information retrieval, but discrimi-
native training [8] has been shown to dramatically improve perfor-
mance and reduce the requirements for domain knowledge.

Thus in natural language call routing, the objective is to min-
imize the routing (classification) error rate (CER), rather than the
word error rate (WER). It is thus suboptimal to estimate the acous-
tic and language models in isolation; instead it may be beneficial
to jointly estimate the acoustic, language, and classification mod-
els to optimize the CER. In this paper, we consider how to improve
the call classification performance through tighter coupling of the
models. In Section 2, we describe in more detail how to achieve
tighter model coupling using lattices or N-best lists. In Section 3,
we describe a novel method of re-estimating the language model
using a training method that directly optimizes the classification
accuracy objective. In Section 4, we describe our experimental
setup and in Section 5, we present some preliminary results. In
Section 6, we conclude with some discussions.

2. MODEL COUPLING

Using the single best word sequence hypothesis from the recog-
nizer as input to the call classifier (as in Equation 2) is clearly
suboptimal because of recognition errors. Better accuracy can be
achieved by using a word lattice, sausage, or N-best list from the
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speech recognizer. [9, 10] Using a list of N-best hypotheses from
the recognizer, a better classification rule is

C = argmax P(Cy|A) ~ argmaxz P(Cy|Wn)P(WnlA), 3)
Ck Ci "

where W, is the n'" best word sequence hypothesis. The poste-
rior probability of class C, given the acoustic signal can be further
expanded as

P(A|W,)P (W)
2 PO =Ry

2n P(Ck|Wn) P(AIWn) P(Wa)

= >, PAW P, O

P(CklA)

Q

(C))

An appropriate objective that is matched to the classification
rule of Equation 3 is the following conditional probability

M
R(A,0,0) = [[ P(C}|Ai, A, 0,9), (©)

=1

where A, 6, and ® are the acoustic, language, and classification
models respectively, M is the total number of training sentences,
and C} is the correct class label for sentence i. We expect that
R(A, 0, ®) is correlated with the classification accuracy and that
its maximization with respect to the component models would lead
to an increase in accuracy. In this paper we focus on estimating
only the language model, while keeping other models constant.

3. LANGUAGE MODEL PARAMETER ESTIMATION

Our baseline language model is a modified Kneser-Ney interpo-
lated bigram [11]; it defines the bigram probability of word w2
conditioned on word w; as

P(w2|w1) = f(wz2|w1) + b(w1)u(ws), @)

where f(wz|w:) is a discounted bigram probability, b(w1) is a
history dependent interpolation weight, and w(ws2) is a unigram
probability. These are estimated from training data as [11]

c(wiwz) — y(c(wiwz))

flwzlwr) = S clwiw) ®)
b(wi) = 1= flwalun). ©)

c(wiwsz) is the count of word pair wy w2 in the training data, and
~v(e(wiws)) is a count dependent discounting weight. The uni-
gram u(ws2) in (7) is chosen so that the unigram marginals of the
resulting bigram match the data marginals. u(wz) is sometimes
further interpolated with a uniform distribution to give a non-zero
probability to unseen words. An excellent in-depth discussion of
modified Kneser-Ney parameter estimation is given by Chen and
Goodman [11].

The parameter estimation under the objective of Equation 6 is
carried out using the extended Baum-Welch procedure of Gopalakr-
ishnan et. al. [4]; this procedure is chosen because Equation 6 is a
rational function of polynomials. To keep the estimated language
model smooth, we update only the f(ws|wi) portion of the bi-
gram model while keeping b(w1) and u(w2) fixed at their original
values. This choice of keeping the interpolation weights fixed was
made somewhat arbitrarily, to keep the smoothing mass of each
history unchanged from the ML estimated model of (7).

Applying the extended Baum-Welch procedure, we can derive
the following parameter update equations

flslwn) = (o
- Cnum(wle) — Cden(wlwz) + Df(w2|'wl)
(]. b(’wl)) Zw2 Cnum(wle) _ Cdcn(wle) + Df('w2|’w1)7

where ¢"*™ (wiw2) and cden (wiw2) denote numerator and de-
nominator counts, respectively, obtained from a list of N most
likely state sequences corresponding to each training sentence

Cnum(wlw2) — (11)
. f(wz|wr)

Pyo Wn Cz 3 Az ’
;wnzem oot )wlwzzewn Flwafwr) +blwiju(wz)
Cden(wle) — (12)

f(wz|wi)

Pyo Wn Az ’

;anef\fz ’ ( | )wlwzzewn f(”LUQ‘”LUl) +b(wl)U(w2)

N denotes the N-best list corresponding to utterance i. 6° is
used to denote the language model parameter values at the current
iteration.

The posterior probabilities of W, used in Equations 11 and 12
are obtained from the N-best lists and current language model as

P(C?[Wn)Pao (Wi, A;)®
Pyo(Wa|CF, Ay) = (¢ )* 00 ( 0
ZWeNi P(Ci |[W) Pgo (W, A;)>

PgO(WnaAi)a
> wen; Poo (W, Ay)> '

The parameter « is a log-likelihood scale that is used to get “rea-
sonable” posterior probabilities; it is tuned on a held out set as
discussed below in Section 5. Note that the LM update according
to Equation 10 does not involve the knowledge of the reference
word script.

The extended Baum-Welch procedure [4] suggests a D value
to be used in (10). However, instead of using this value, we follow
a strategy that is analogous to choosing D for conditional maxi-
mum likelihood (CML) estimation of acoustic models [1] and was
found to be useful in CML estimation of language models [12].
We select D as

P90 (Wn‘AZ)

(14)

D = \D” 15)
num _ .den

D' = max S i) — M wiwe) g
w1,w2 f(szwl)

where A > 1.0 is an empirically selected parameter. We note
that this choice of D simply ensures positivity of the numerator
on RHS in (10), and consequently ensures validity of f(ws|w:).
We experimented with history wi dependent D(w; ) values, some-
thing that is also found to be of value in CML estimation of acous-
tic models [1]. Details of these experiments are reported in Sec-
tion 5.

4. EXPERIMENTAL SETUP

The experiments reported in this paper were conducted on an IBM
internal corpus collected for a natural language call routing sys-
tem. The system routes incoming calls to one of 35 destinations.
The training data consisted of 27685 sentences containing 180K

words. These sentences were divided into a trainset (24503 sen-
tences) that was used in model training and a devset (3182 sen-
tences) set that was used for selecting heuristic parameters. A sep-
arate data set containing 5589 sentences and 38K words was used
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trainset devset testset
objective | classification | objective | classification | objective | classification
iteration | A function accuracy function accuracy function accuracy
0 -7146 93.01 -1787 85.95 -3134 86.19
2 2.0 -6804 93.43 -1777 86.05 -3112 86.37
4 2.0 -6711 93.58 -1775 86.02 -3108 86.35
6 1.1 -6576 93.78 -1770 85.92 -3098 86.38
8 2.0 -6492 93.91 -1768 86.05 -3092 86.42
10 2.0 -6425 93.99 -1768 86.08 -3087 86.37

Table 1. N-best based classification accuracy and objective function values with iterations of language model update. Iteration O corre-

sponds to the baseline language model.

as the testset. All of the trainset, devset, and testset sentences were
hand labeled with correct destination classes.

A maximum entropy model [13] was trained as the statistical
classifier P(Cy|W) used for call classification. For simplicity,
only single word features (unigrams) were used, and the model
was trained on the transcribed text of the trainset.

The acoustic model training data consists of about 1000 hours
of audio data. The acoustic feature vectors were obtained by first
computing 13 Mel-cepstral coefficients (including energy) for each
time slice under a 25.0 msec. window with a 10 msec. shift. Nine
such vectors were concatenated and projected to a 60 dimensional
space using LDA. An acoustic model was built on these features
with a phone set containing 50 phones. Each phone was mod-
eled with a three state left to right HMM. This, in addition to six
states of two silence phones, resulted in 156 context independent
states which were decision-tree clustered into 2198 context depen-
dent states and modeled using state dependent Gaussian Mixture
Models. There are 222620 Gaussians all together in the acoustic
model.

This acoustic model was MAP adapted [14] using the in-domain
training data (trainset) with a weight that was found to yield min-
imum word error rate on the devset. The resulting acoustic model
was the one used in all the experiments reported in this paper.

The language model that formed the baseline for our experi-
ments was a bigram model described in Equation 7. This model
was estimated on the trainset using an IBM internal language mod-
eling toolkit developed by Stanley Chen.

Using the acoustic and language models described above, 500-
best lists were generated for trainset, devset, and testset. The top
(most likely) hypothesis in the testset had word/ sentence error
rates of 23.30/ 46.02% . On the devset, the word/ sentence error
rates of the top hypothesis were 23.17/ 47.05% and on the train set
they were 14.81/ 35.89%.

5. EXPERIMENTAL RESULTS

5.1. One-Best Vs N-Best Based Classification

As our first experiment, we compared the classification accuracy
of using the most likely hypothesis according to Equation 2 with
that of using the N-best lists according to Equation 3.

The testset classification accuracy using the most likely hy-
pothesis was 85.42%, for the devset it was 84.70%, and for the
trainset it was 92.23%. To see the effect of ASR on classification
accuracy, we computed the accuracy using the reference text. Re-
sulting numbers were 89.32% on testset and 89.53% on devset and
96.41% on the trainset. Thus there is an absolute degradation of

about 4-5% in classification accuracy when using the top hypoth-
esis from the ASR compared to the correct transcription.

To carry out N-best based classification according to Equa-
tion 3, the probabilities P(W,,|A) were computed as described in
Equation 14. A line search was carried out for parameter o and
the value that gave optimal classification accuracy on the devset
was chosen. This resulted in @ = 2.0 and devset classification
accuracy of 85.95%. Using a = 2.0 on the testset resulted in clas-
sification accuracy of 86.19%, a relative reduction of about 5% in
classification error rate.

5.2. Updating Language Model

In the next set of experiments, we estimated the language model
from N-best lists, as discussed in Section 3.

Several iterations of LM update were carried out where each
iteration consisted of gathering ¢"“™ and ¢?*™ according to Equa-
tions 11 and 12, finding history dependent D* (w1) values (Equa-
tion 16 with maximization carried out only over ws), conducting
a line search for A in Equation 16 so as to maximize the objective
function value (Equation 6) on the devset, and updating the lan-
guage model (Equation 10 with D replaced by D(wi)). The re-
sulting LM was used as the starting LM for the next iteration. We
note that the objective function maximization on devset was car-
ried out in an attempt to avoid over-training the language model.

Table 1 presents the objective function values and N-best based
classification (Equation 3) results on the trainset, devset, and test-
set. From this table, we note that the LM updates result in a signif-
icant increase in the objective function value and classification ac-
curacy on the trainset. The improvements on the testset are small,
but there is a very encouraging positive movement. Note that we
stopped at iteration 10 since the objective function stopped im-
proving on the devset. However, the trainset and testset objective
function and the error rate are still improving, suggesting that other
stopping criteria may be more useful.

We also looked at the effects of our language model updates on
the word error rate and classification accuracy of the one-best hy-
pothesis. Use of one-best corresponds to classification according
to Equation 2 and may be useful in cases when N-best lists are only
available at training time but testing is done on one-best hypothesis
(possibly due to limited resources during run-time). From results
presented in Table 2, we note that, interestingly (and somewhat ex-
pectedly), there is a consistent degradation in the word error rates
while the test set classification accuracy increases with increasing
iterations of LM updates. This reinforces our original motivation
that direct optimization of the classification accuracy may be a bet-
ter goal to strive for than word error rate even when there is only
the most likely hypothesis available at test time.
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trainset devset testset
word classification word classification word classification
error rate accuracy error rate accuracy error rate accuracy
0 14.81 92.23 23.17 84.70 23.30 85.42
2 14.82 93.09 23.19 84.79 23.43 85.76
4 14.98 93.36 23.41 84.88 23.67 85.81
6 15.31 93.58 23.72 84.60 24.04 85.95
8 15.81 93.70 24.09 84.85 24.40 85.94
10 16.32 93.82 24.63 84.70 24.82 85.92

Table 2. One-best word error rate and classification accuracy with iterations of LM updates. Iteration O corresponds to the baseline language

model.

We note that in the experiments reported here, the N-best lists
were kept fixed. This may have provided us some protection from
degrading the classification performance but may also have limited
the gains that we see from this technique. One of our immediate
future experiments is to re-generate N-bests at each iteration under
the updated language model.

6. CONCLUSIONS

In this paper we have presented a novel language model estima-
tion procedure that aims to directly optimize the call classification
accuracy of a natural language call routing system. Rather than
estimating acoustic, language, and classification models in isola-
tion, we believe better coupling among the models and joint op-
timization should provide better end-to-end performance. In par-
ticular, the maximum likelihood criterion commonly used to train
language models or even the word error rate (WER) metric used
to benchmark speech recognition systems may not be the correct
criteria to use, since they are only indirectly related to the call clas-
sification accuracy.

In contrast, we have proposed an objective function that is
more closely related to the ultimate goal of classification perfor-
mance. Preliminary experiments show modest improvements. The
results also show that improvements in classification accuracy may
be uncorrelated with the word error rate, providing evidence for
our hypothesis that end-to-end optimization of the classification
accuracy is more important than optimizing the WER. Importantly,
our objective function does not require knowledge of the correct
transcription. Therefore, our proposed algorithm can be used in
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unsupervised training of language models using un-transcribed speech,

and can potentially provide substantial gains.
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