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ABSTRACT

This paper investigates discriminative language modeling in a sce-
nario with two kinds of observed errors: errors in ASR transcrip-
tion and errors in utterance classification. Using the perceptron
algorithm, we train joint language and class models either inde-
pendently or simultaneously, under various parameter update con-
ditions. On a large vocabulary customer service call-classification
application, we show that simultaneous optimization of class, n-
gram, and class/n-gram feature weights results in a significant
WER reduction over a model using just n-gram features, while ad-
ditionally significantly outperforming a deployed baseline in clas-
sification error rate. A range of parameter update approaches for
the various feature sets are presented and evaluated. The result-
ing models are encoded as weighted finite-state automata, and are
used by intersecting the model with word lattices.

1. INTRODUCTION

Discriminative modeling techniques, such as the perceptron algo-
rithm and conditional random fields, have been shown recently to
provide significant word-error rate (WER) reductions over base-
line system performance on Switchboard, using just n-gram count
features [12, 13]. Reductions in WER are critical for applications
making use of automatic speech recognition (ASR), but the key ob-
jective of a particular application may be different. For example,
the effectiveness of spoken document retrieval can be impacted by
the accuracy of the underlying ASR system, but the system objec-
tive will ultimately be some sort of precision of retrieval metric.
Classification of unrestricted customer utterances into a number of
classes for interaction with an automated dialog system is another
application that relies upon accurate ASR [7], but the success of
the application is often evaluated with respect to class-error rate
(CER) not WER. If the ASR system is being optimized for use in
such an application, discriminative training scenarios such as those
cited above should be focused upon the system objective rather
than WER.

Often, however, multiple objectives will be important to the
application. For example, both WER and CER will be important
to the application when named entities or other information is ex-
tracted from the ASR output, in addition to classification. Gen-
erally speaking, however, classifiers are optimized independently
of the ASR models, either for the purpose of just returning the ut-
terance class (e.g. [8]), or for feeding a class or topic back into
the language model (e.g. [16]). ASR models are likewise rarely
trained for classification (though see [11]). Reduced WER, how-
ever, can improve classification, and improved classification can
improve WER, i.e. a joint model serves both objectives, and per-
formance may be improved for both objectives through simultane-
ous optimization of the joint model parameters.

A discriminative language model of the sort described in
[12, 13], with the objective of reduced error in transcription, can
improve CER by virtue of providing better transcriptions to the
classifier. Alternatively, these discriminative approaches can be
straightforwardly extended to perform utterance classification in
addition to lattice re-weighting, by adding possible class labels to
the transcriptions and including class label features in the model.
In this paper, we perform a range of experiments investigating the
benefit of simultaneous optimization of parameters for both WER
and CER reductions. We demonstrate that simultaneously optimiz-
ing parameters weights for both n-gram and class features provides
significant reductions in both WER and CER.

The rest of the paper is structured as follows. First, we will
present the general approach that we are following for discrimi-
native language modeling, following [12, 13]. Next, we will de-
scribe how we add utterance class annotations to the training and
extend the feature set to perform classification in addition to lat-
tice re-weighting. Under this general approach, several possible
parameter update conditions are described. Finally, we perform
an empirical evaluation of the range of approaches that have been
presented, on a large-vocabulary customer service application.

2. METHODS

2.1. Linear Models for N-gram Language Modeling

We follow the linear modeling framework outlined in [3, 4], and
used for WER reduction in ASR in [12, 13]. The approach allows
us to learn a mapping from inputs x ∈ X to outputs y ∈ Y .
In the current case, X is a set of utterances, and Y is a set of
possible transcriptions and utterance classifications. The approach
assumes:

• Training examples (xi, yi) for i = 1 . . . N , where yi is the
reference annotation of xi.

• A function GEN which enumerates a set of candidates
GEN(x) for an input x, e.g. word-lattice paths with hy-
pothesized classifications.

• A representation Φ mapping each (x, y) ∈ X × Y to a
feature vector Φ(x, y) ∈ R

d.

• A parameter vector ᾱ ∈ R
d.

The components GEN, Φ and ᾱ define a mapping from an
input x to an output F (x) through

F (x) = argmax
y∈GEN(x)

Φ(x, y) · ᾱ (1)

where Φ(x, y) · ᾱ is the inner product
∑

s αsΦs(x, y). The learn-
ing task is to set the parameter values ᾱ using the training examples
as evidence. Note that in ASR, weights are negative log probabili-
ties, which changes argmax to argmin in these algorithms.
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Inputs: Training examples (xi, yi)
Initialization: Set ᾱ = 0
Algorithm:

For iteration t = 1 . . . T , i = 1 . . . N
Calculate zi = argmaxz∈GEN(xi)

Φ(xi, z) · ᾱ
If(zi �= yi) then ᾱ = ᾱ + Φ(xi, yi) − Φ(xi, zi)

Output: Parameters ᾱ

Fig. 1. A variant of the perceptron algorithm.

There are many approaches to setting the parameters, ᾱ, given
training examples (xi, yi). For WER reduction, [12] used the per-
ceptron algorithm [3], and [13] used conditional random fields [9]
with the same feature sets as [12]. For this paper, we used the per-
ceptron algorithm, shown in figure 1. We use cross validation on
a held-out set to determine the number of iterations T ; and at test
time, the averaged perceptron parameter values were used to con-
trol for overtraining. See [12] for more details on this approach.

2.2. Feature Definitions and Implementation

The feature set Φ investigated in the current paper includes:

1. the scaled cost given by the baseline ASR system, i.e.
−λ log P(A, W );

2. unigram, bigram and trigram counts in the utterance, e.g.
C(w1, w2, w3);

3. the utterance class cl; and

4. class-specific unigram and bigram counts, e.g.
C(cl, w1, w2).

Feature sets (1) and (2) are the same as those used in [12, 13], and
their parameter weights can be efficiently represented in a deter-
ministic weighted finite-state automaton (WFA), through the use
of failure transitions [1]. See [12] for details in this efficient en-
coding, which is presented schematically in Figure 2. Briefly, ev-
ery state in the automaton represents an n-gram history h, e.g.
wi−2wi−1, and there are transitions leaving the state for every
word wi such that the feature hwi has a weight. There is also
a failure transition leaving the state, labeled with some reserved
symbol φ, which can only be traversed if the next symbol in the
input does not label any transition leaving the state. This failure
transition points to the backoff state h′, i.e. the n-gram history h
minus its initial word. Let N denote this n-gram WFA.

The class-specific feature sets (3 and 4 above) are encoded in
a second, class-specific weighted WFA, which we will denote C.
The initial state of C has k arcs, each labeled with one of the k
class labels and weighted with the parameter weight for that class.
The destination state of each of these k arcs is the start state of a
class-specific n-gram automaton, of the same topology as N .

The output of our system will be a class label and a tran-
scription. However the weighted word lattice L output by the
baseline recognizer only includes transcriptions, as does the class-
independent model N . We can emit a class label for every path
from both of these automata by appending a new start state to the
beginning of them. The new start state has k arcs, each labeled
with one of the possible set of class labels and each has the original
start state as destination. In such a way, any word string produced
by the original WFA is preceded by any of the possible class la-
bels. Let Lc and Nc denote L and N with class labels appended,
respectively. Figure 3 shows the start of such a trigram model Nc.

Note that it is also possible to view this setup as a transduction
from words to classes. Instead of using the output labels of a finite-
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Fig. 2. Representation of a trigram model with failure transitions.
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Fig. 3. Start of a trigram model with classes appended.

state transducer, in our implementation we chose to use the initial
labels to indicate the classes.

Using the joint model, the one-best class/transcript sequence
is found by extracting the best path from λLc ◦ Nc ◦ C, where ◦
denotes intersection as usual and λ is the scale given to the base-
line ASR score. In contrast, most call routing systems first extract
a one-best word transcript which is then used for classification. In
our notation this corresponds to first extracting w = bestpath(L)
and finding bestpath(wc ◦ Nc ◦ C), where w is the best word se-
quence and wc is w with class labels appended. Examples of sys-
tems that use more than just the single best word hypothesis can
be found in [2, 5, 15].

2.3. Parameter Estimation

Perceptron training consists of extracting the best scoring anno-
tation z for the current utterance x using the current models, and
updating the parameter value for each feature with the difference
between the gold standard feature count and the feature count of
z. Which annotation to choose as the gold standard is an impor-
tant question: in [12] it was shown for n-gram modeling that using
the minimum error rate annotation in the word-lattice as the gold
standard outperforms using the reference annotation itself. We can
control parameter updates to suit a particular objective by choos-
ing the gold standard annotation so that only features related to
that objective are updated.

Here we have two main objectives: having an accurate tran-
scription and choosing the correct class for each utterance. The
parameters can be independently or simultaneously optimized to
achieve either one or both of the objectives. Let ŷ be the gold
standard annotation for utterance x, and z the one-best annotation
from λLc ◦ Nc ◦ C for the current models. Let c(ŷ) and w(ŷ)
denote the class label and word transcription, respectively, of the
annotation ŷ; and let c(z) and w(z) be defined similarly for the
one-best output z. If the sole objective of training is classification
error reduction, we can effectively ignore errors in transcription by
setting our gold standard for parameter update to y = c(ŷ)w(z).
Since w(y) = w(z), the difference in feature values related to the
baseline ASR score and class-independent n-gram counts will be
zero, i.e. those parameters will not be updated, and will remain
with value zero. Update will only occur if the class label c(z) is
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incorrect. Similarly, if the sole objective is word-error rate, we
can ignore the class label by setting y = c(z)w(ŷ). Simultaneous
optimization of the parameters occurs if we let y = ŷ. A varia-
tion can be obtained by optimizing the parameters for feature sets
(1) and (2) for word error rate while optimizing the parameters for
features sets (3) and (4) for classification.

3. EMPIRICAL RESULTS

We present empirical results on one of the AT&T VoiceTone R©

large vocabulary customer service applications. The training set
consists of 29561 utterances (361353 words), of which 5909
were used as held-out data. The test set consists of 5537 sen-
tences (46243 words). There are 97 utterance classes, referred
to as calltypes. Each utterance in the corpus is labeled with
one or more calltypes, e.g. Request(Call Transfer) or
Request(Order Status). On average there are 1.1 calltypes
per utterance. There are at most 4 labels per utterance.

We evaluate performance with two metrics, corresponding to
our two objectives. First is word accuracy (WAcc), which is
standardly defined as 100-WER. Second is top-class error rate
(TCErr), which is the percentage of utterances for which the high-
est scoring calltype is not among the labeled calltypes for that ut-
terance. We followed two broad training scenarios with respect to
the calltypes. In the first, we selected a single calltype per train-
ing utterance from among the set, always selecting that calltype
which occurs least frequently in the training corpus. We refer to
this training condition as “1-label”. The second training condi-
tion leaves all calltypes, and parameter updates allocate evidence
uniformly over the classes (similar to the uniform case of the al-
gorithm described in [6]). For example, if there are two classes
labeled for an utterance, half of the reduction in cost of the class
label feature goes to one class, and half goes to the other.

The baseline deployed classifier for this application was
trained using Boostexter [14], using either reference transcriptions
or one-best transcriptions from ASR. We trained a second base-
line classifier with the perceptron algorithm by also restricting our
input “lattice” to a single string. Classification is the sole objec-
tive here, since the word transcript is already fixed, so here we set
the gold standard annotation to y = c(ŷ)w(z). Table 1 shows
some baseline results on this test data. For each classifier, we
present three results. The first result is trained and tested on the
one-best transcription of the baseline ASR system, which has a
word accuracy of 78.4 percent. The second result is obtained with
classifiers trained and tested on the one-best after intersecting the
word-lattice L output from the baseline ASR with the perceptron-
trained n-gram model N , which improves word accuracy to 80.1
percent. The final baseline shows classification error when trained
and tested on the reference transcription, as a lower-bound.

From this we can see that the perceptron classifier outperforms
the Boostexter classifier by around one percent when trained on
reference, but by more when trained on ASR output. This com-
parison is included primarily to demonstrate that the classifier that
results from the baseline training algorithm is performing at a level
comparable to other common approaches.

Table 2 shows the results of training perceptron models on
word-lattices under various parameter update conditions. Trials
1 and 2 show the result of setting the gold standard annotation to
y = c(ŷ)w(z), i.e. ignoring errors in transcription, similar to the
baseline trials but without restricting the input to a single string.
Trial 1 takes as input the baseline ASR lattice with all classes ap-
pended to the beginning of the lattice. In comparison with the

Input word string Boostexter Perceptron
(training and test) k-label 1-label k-label

WAcc TCErr TCErr TCErr
bestpath(L) 78.4 24.5 24.3 23.2
bestpath(L ◦ N ) 80.1 23.7 23.9 22.2
reference 100.0 19.4 20.0 18.5

Table 1. Top-class error rate (TCErr) baselines using either the de-
ployed classifier trained using Boostexter or a perceptron-trained
classifier for 1-label and k-label training scenarios, given either (1)
the one-best from the lattice L output from ASR; (2) the one-best
after intersecting L with the corrective n-gram model N ; or (3) the
reference transcription.

baseline trial restricting input to the one-best from ASR, we see
that we get nearly a 1 percent reduction in TCErr in the k-label
scenario by combining the models before performing one-best ex-
traction. The word accuracy is not significantly different from the
baseline. Trial 2 provides as input the word-lattice after intersec-
tion with the perceptron-trained n-gram model N . Again, we ob-
serve a TCErr improvement (0.6 percent in the k-label scenario),
with a small non-significant change in word accuracy, this time
slightly better than the baseline. Overall, this demonstrates the
importance of training and applying these models to word-lattices
rather than word-strings.

Trials 3-5 show the flip-side of trials 1 and 2, in that the gold
standard annotation is chosen as y = c(z)w(ŷ), i.e. calltype
errors are ignored and only differences in word transcription are
considered when updating parameters. Trial 3 provides an upper
bound on the improvement to word accuracy that could be had
from these calltype labels, since it appends the true reference class
to each word lattice. Trial 4 demonstrates that, if instead of ap-
pending the true class, we instead append the predicted class, using
the model trained in trial 1, we achieve no significant improvement
in word accuracy. Note that the model used to provide the annota-
tion was trained in a k-label scenario, so this is the only scenario
possible for trials 4 and 5. In trial 5, rather than restricting the la-
bel to a single predicted class, we simply take as input the word
lattice intersected with the classifier, which is analogous to trial 2
when the lattice was composed with the n-gram model N . Here
we find that the word error rate is improved almost to the level of
the upper bound set in Trial 3. However, the classification perfor-
mance degrades significantly under this scenario. Finally, trial 6
performs simultaneous optimization of the class-independent and
class-specific features by leaving the gold standard annotation as
ŷ. Here we achieve significant word accuracy improvements over
the perceptron n-gram model performance, as well as statistically
indistinguishable TCErr performance from trial 2. For the k-label
case the word accuracy improvement (from 80.1% to 80.5%) is
significant at p < 0.005 using the Matched Pair Sentence Seg-
ment Word Error significance test provided by SCTK[10]. TCErr
reductions from 23.2 to 21.8 or below are significant at p < 0.05.
We also experimented with optimizing the parameters for feature
sets (1) and (2) for word error rate while optimizing the parameters
for features sets (3) and (4) for classification. This variant yielded
TCErr of 22.5 and 21.5, and WAcc of 80.2 and 80.3, for the 1-label
and k-label cases respectively.

4. DISCUSSION

This paper has investigated the effect of joint discriminative mod-
eling on two objectives, classification and transcription error. On
the classification side, there are three potential factors leading to
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Trial Training and testing input Gold standard 1-label k-label
Number Classes appended To lattice Class Label Transcript TCErr WAcc TCErr WAcc

1 All classes L c(ŷ) w(z) 23.6 78.3 22.3 78.3
2 All classes L ◦ N c(ŷ) w(z) 23.2 80.2 21.6 80.3

3 True class L c(z) w(ŷ) 0.0 80.5 0.0 80.6
4 Predicted class from trial 1 L c(z) w(ŷ) - - 22.3 80.2
5 - Lc ◦ C c(z) w(ŷ) - - 35.5 80.5

6 All classes L c(ŷ) w(ŷ) 22.9 80.5 21.8 80.5

Table 2. Word Accuracy (WAcc) and Top-class error rate (TCErr) for 1-label and k-label training scenarios under various parameter update
conditions and with varying training input.

the best performance: (1) improvements in word accuracy pro-
vided by the model; and (2) delaying the extraction of the 1-best
hypothesis, i.e. using word-lattice input rather than strings; and (3)
simultaneously optimizing parameters for classification and tran-
scription error reduction. In the k-label scenario, the first two fac-
tors provide 1% reduction independently and 1.6% total reduction
when combined. Simultaneous optimization does not provide fur-
ther improvement over the two factors.

For word accuracy, a similar breakdown can be investigated,
though with different conclusions. In this case, adding a predicted
class to the word-lattice does not significantly improve word accu-
racy over the simple n-gram model. Providing the distribution over
classes from the classifier, i.e. delaying the decision about which
class is correct, provides a 0.4% absolute reduction in word error
rate, though at the expense of a very large degradation of TCErr.
Finally, simultaneous optimization of the parameters gives us as
much improvement in word accuracy as we could get knowing the
true class of the utterance, without penalizing TCErr. In summary,
simultaneous optimization allows us to reach the best performance
in both objectives with a single joint model.

There are several important extensions to this work that are
planned. First, it was shown in [13] that estimating the parameters
of a discriminative n-gram model using conditional random fields
significantly improves word accuracy over perceptron parameter
estimation with the same feature set. The parameters of this joint
model can also be estimated in this way, which may lead to im-
provements in one or both of the objective functions.

Second, there are interesting issues when considering other
annotations beyond utterance class. Coarser annotations, such as
conversation topic in Switchboard, could be annotated, although
because of topic drift and off-topic or topic-generic utterances,
both the predictability and utility of these annotations may be less
than in the current case. In addition, finer annotations, e.g. part-
of-speech (POS) tags, bring up some difficult issues, particularly
having to do with identifying an appropriate gold-standard, since
manual annotation of a given training set would be expensive. In
both of these cases, word accuracy is likely to be the primary ob-
jective of modeling, and from the current results, it seems clear
that simultaneous joint modeling is a promising approach.
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