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ABSTRACT

Speech detection becomes more complicated when performed in 

noisy and reverberant environments like e.g. smart rooms. In this 

work, we design a robust speech activity detection (SAD) 

algorithm and we evaluate it on distant microphone signals 

acquired in a smart room-like environment. The algorithm is 

based on a measure obtained from applying Linear Discriminant 

Analysis on Frequency Filtering features. With a time sequence 

of this measure, a decision tree based speech/non-speech 

classifier is trained. The proposed SAD system is evaluated 

together with other SAD systems (GSM SAD and ETSI 

Advanced Front-End standard SAD) using a set of general SAD 

metrics as well as using the ASR accuracy as a metric. The 

proposed SAD algorithm shows better average results than the 

other tested SAD systems for both the set of general SAD 

metrics and the ASR performance. 

1. INTRODUCTION 

The purpose of Speech Activity Detection (SAD) is to detect 

speech in a continuous stream of audio signal. SAD is being 

used as a supporting technology in many speech related 

technologies like automatic speech recognition, speech coding, 

speaker identification, speaker localization, etc. SAD can save 

computational resources (and batteries) in the devices where the 

processing of non-speech events is not needed. In the case of 

ASR, besides saving the resources, SAD can significantly 

improve the recognition performance of the system if the non-

speech events are excluded from the recognition process. On the 

other hand, in many speech enhancement technologies, the 

reliable detection of non-speech portions of signal is of interest 

in order to properly estimate the noise characteristics.  

In our research center, we start to work with a smart room 

environment. In a smart room, the audio acquisition is assumed 

to be done in an unobtrusive way, usually by a network of far-

field microphones. The distance of these microphones from the 

audio source (speaker) can vary from several centimeters to 

several meters. In such challenging environment, a high 

robustness of all speech technologies, including SAD, against 

environmental noises and reverberation is extremely important. 

In this work, we propose and test a SAD algorithm for this 

environment; it is based on robust speech features, Frequency 

Filtered log spectral energies further processed by Linear 

Discriminant Analysis. The speech activity measure that is 

obtained in this way is described in detail in Section 2. Section 3 

describes the speech/non-speech decision taking block. In 

Section 4, the performance of our SAD and several other SAD 

systems is compared in terms of a) coincidence with the 

reference speech/non-speech labels and b) the ASR accuracy. 

2. FF+LDA MEASURE 

The presented SAD system is based on Frequency Filtering (FF) 

features. In [2], higher robustness of FF features in comparison 

to MFCC features was reported in noisy ASR tests; we expect 

this robustness aspect of FF to be reflected in our SAD system. 

The FF feature extraction scheme consist in calculating a 

log filter-bank energy vector for each signal frame and then 

applying a FIR filter h(k) on this vector along the frequency 

axis. We used the h(k)={1, 0, -1} filter in our SAD. Notice that 

FF requires less computation than MFCC. 

The initial size of FF feature vector is reduced to a single 

measure “m1” by applying Linear Discriminant Analysis (LDA). 

LDA has already been proposed as a method of information 

fusion for speech detection in noisy environments in [1]. In that 

work however, the authors apply LDA to MFCC features. 

For a given vector C of FF features, the measure m1 is 

obtained as a scalar product m1=V•C', where V is the 

eigenvector corresponding to the largest LDA eigenvalue 

calculated from the training set of parameterized signals. 

Vectors C are of dimension 14 and they are computed from 30 

ms long signal frames. The frame shift is 10 ms. 

Figure 1 compares visually the discrimination capability of 

the m1 measure. It shows histograms of m1 values considering 

the two classes, speech and non-speech, obtained by applying 

the LDA on FF features (right) and MFCC features (left). The 

common area shared by the two classes in the FF+LDA 

Figure 1 Histograms of m1 values obtained for speech and

non-speech classes using MFCC (left) and FF (right) features.
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histogram is smaller than that in the MFCC+LDA histogram, 

indicating the FF+LDA m1 measure is more discriminative than 

the MFCC+LDA m1 measure. This observation can be 

confirmed by calculating the classification error of the speech 

and non-speech m1 measures using an optimal Bayes classifier. 

Indeed, the classification error for the FF+LDA m1 measure is 

10.67%, while for the MFCC+LDA m1 measure it is almost 

double, 19.81%, for the used training data. 

Usually, in speech recognition, delta and delta-delta 

features are appended to the original static features. These 

dynamic features, calculated as derivatives of the static ones, 

carry information about the changes in features along the time 

and significantly improve the ASR performance. Also in the 

presented SAD approach, we added to the static FF feature 

vector of length 14 the corresponding delta and delta-delta 

features ( FF and FF) together with the delta energy 

parameter ( E); thus, in total the FF feature vector size increases 

to 43 (14+14+14+1). After applying LDA to such feature 

vectors, the classification error for the FF+LDA m1 measure 

decreases to 7.78%. We use this feature vectors in our SAD 

system and from now on we refer to the corresponding m1 

measure as FF+LDA m1 measure. 

3. SPEECH/NON-SPEECH CLASSIFIER AND DECISION 

BLOCK 

The FF+LDA measure m1 is a float number and it has to be 

post-processed to obtain a binary output indicating speech (“1”) 

and non-speech (“0”) portions of signal. The simplest approach 

is to establish a threshold for making the speech/non-speech 

decision but this approach gave very poor results. Other 

approach would be to implement a finite-state automata 

controlled by the m1 measure levels and to define the time 

hangover thresholds. However, this approach may require a lot 

of manual tuning. In the present work, we employed the C4.5 

algorithm [3] to train a decision tree classifier with the FF+LDA 

m1 values (the problem of manual tuning is “left” on the 

classifier). The output of the tree classifier, the speech/non-

speech decision together with its confidence, is passed to 

Decision Block (see Figure 2). In this block, the binary output 

is obtained by applying a threshold  on the confidence. 

We tested also neuronal networks as a classifier but the 

results we obtained were not much different from those of the 

decision tree classifier; note that much longer training is 

required for neural networks than for the employed tree 

classifier. 

3.1. Training of the tree classifier 

In order to include information from a time span larger than one 

frame, the classifier is provided also with 15 previous and 15 

future m1 values besides the present m1 value (this can be seen 

as a memory of a finite-state automata). Thus, in total 31 

FF+LDA m1 values are available to the classifier, which 

correspond in our case to a time span of 330 ms.  

The classifier was further simplified in such a way that only 

the most important m1 measures out of the 31 provided were 

automatically selected. This automatic selection consists in 

increasing the number of m1 measures allowed to be used by the 

classifier establishing limits to the growth of the tree: when the 

decision tree is allowed to use only a single m1 measure, it 

chooses the present one (the number 16 in Figure 2); in this 

case, it achieves a 7.78% classification error on the training data. 

If it is allowed to use two m1 measures, it selects 16 and 6 

obtaining an error of 6.1%. Thus, a significant improvement can 

be achieved by adding only one past m1 measure within about a 

100 ms time span (16 less 6 = 10 frames). It is not until the 

classifier is allowed to choose 4 measures that one selected 

measure is from the future time with respect to the present 

measure (the number 27). With seven measures allowed, the 

classifier chooses – by order of the question within the tree – the 

measures 16-6-2-27-10-29-5 and it obtains 4.5% error; 4 

measures are from past and 2 measures are from future. If the 

classifier is let to use all 31 measures, the error decreases to 

3.6%, however, this does not compensate for the increase in the 

decision tree size. Thus, we use the previously mentioned seven 

m1 measures in our SAD system. 

In addition, a few experiments have been performed giving 

an option to the tree classifier to choose the m1 values obtained 

using the second and higher LDA eigenvector. The tests showed 

the m1 measures obtained with the first LDA eigenvector from 

the frames from different time positions are more important than 

the m1 measures obtained with any other LDA eigenvectors of 

the present frame. 

4. EXPERIMENTS 

4.1. Databases 

We use two databases in our tests: Spanish SpeechDat [5] and 

SPEECON [6]. SpeechDat was used for computing the LDA 

eigenvectors as well as for training the tree classifier. This 

corpus has been recorded through a fixed telephone line at 8 kHz 

sampling frequency with the a-law codification. It contains 1011 

speakers with 19286 sentences. 

All the speech detection experiments were performed on 

SPEECON data. This database was recorded at 16 kHz sampling 

frequency and uses 16-bit linear quantification. It contains 600 

speakers with both read and spontaneous speech. Interesting for 

our evaluation is that all the sessions have been recorded 

simultaneously with four different microphones: a close-talk 
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Figure 2 Operational diagram of the proposed SAD.
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microphone, a lavalier microphone, a directional microphone 

located at 1 m from speaker and an omnidirectional microphone 

located at 2-3 m from speaker. A subset of 1338 sentences (75 

speakers) containing dates, numbers and times of the day were 

selected for testing. Additionally, in the ASR experiments 

described bellow, 125/4504 speakers/sentences were used for 

training the acoustic models. All the used SPEECON data were 

recorded in the office environment with some occasional 

computer or air-conditioner noise. 

4.2. Metric and reference labels 

We use two different kinds of metrics to evaluate our SAD. The 

first one is a set of general SAD metrics in which the 

speech/non-speech decision of the evaluated SAD system is 

compared and scored with the reference speech/non-speech 

labels. In the other case, the accuracy of an ASR system 

containing the evaluated SAD system is used as metric for 

comparison of different SADs. 

Although probably the best reference labels for SAD 

evaluation would be obtained by performing a manual 

transcription, the generation of such transcription is time 

consuming and expensive. In this work, we employed a faster 

and cheaper automatic process using the Viterbi alignment to 

mark speech and non-speech segments of signal. Note that there 

is an error related with this labeling. In the case of SPEECON 

data, the alignment was done on the close-talk microphone and it 

was adjusted to the other microphones by correlating the 

respective signals. 

4.3. Tested SAD systems 

Besides the SAD system described in this paper, three other 

systems are tested for the comparison purposes. One of them is 

the commercially used SAD system from the GSM cell-phone 

standard. The other two are extracted from the ETSI Advanced 

Front-End standard for noisy speech recognition [4]; one of them 

is used for frame dropping in this standard (denoted here as 

AFE_FD) and the other one is used for noise estimation in the 

de-noising part (Wiener Filter) of the standard (AFE_WF). 

4.4. Evaluation by a set of general SAD metrics 

We use the following set of general SAD metrics: 

1) Mismatch Rate (MR) – gives an average performance of 

SAD on the data. It is calculated as MR = Time of Incorrect 

Decisions / Time of All Utterance.  

2) Speech Detection Error Rate (SDER) – assesses the SAD 

performance on the speech portions of signal. It is calculated as: 

SDER = Time of Incorrect Decisions at Speech Segments / Time 

of Speech Segments.  

3) Non-speech Detection Error Rate (NDER) – assesses how 

the SAD performs on the non-speech portions of signal. It is 

calculated as: NDER = Time of Incorrect Decisions at Non-

speech Segments / Time of Non-speech Segments. 

Figure 3 SDER vs. correct non-speech detection. The arrow 

points the working point with =0.5.

Figure 3 shows the relationship between SDER and 100-

NDER (= correct non-speech detection) for our FF+LDA SAD 

system when the threshold  from Figure 2 changes from 0 to 

1.0. Also in Figure 3 there are shown the working positions of 

the other three SAD systems: GSM, AFE_FD, and AFE_WF. 

Results for the close-talk and the omni-directional 2-3 m mikes 

are displayed. 

In Figure 3, in GSM SAD the SDER increases from 3.32% 

observed for the close-talk microphone to 27.49% for the distant 

microphone and the correct non-speech detection changes from 

52.36% to 38.97%. This behavior can be expected from this 

SAD system as it was designed for close-talk microphone 

applications. The AFE_FD SAD works better in the distant 

microphone case. Our SAD system always gives better relation 

between SDER and correct non-speech detection. For the rest of 

the experiments we use =0.5 in our system. 

Table 1 shows detailed SAD results according to the 

speaker-microphone distance. In general, we observe that all the 

SADs systems maintain their close-talk MR performance up to 

the 1 m Directional case. Then, they experiment a significant 

degradation for the 2-3 m distance except for the AFE_FD SAD. 

The AFE based systems are very conservative when deciding for 

non-speech; this can be observed from their low SDER and high 

NDER obtained for all mikes. On the other hand, the FF+LDA 

system is more aggressive when deciding for non-speech, which 

is reflected in relatively balanced SDER and NDER across the 

first three mikes and the much lower NDER than SDER in the 2-

3 m Omni case. It can be foreseen that the AFE systems are well 

designed for a technique like frame dropping, while the 

FF+LDA will work better when a good estimation of non-speech 

is needed (e.g. speech enhancement). 

Close-Talk Lavalier 1 m Directional 2-3 m Omni 

SDER NDER MR SDER NDER MR SDER NDER MR SDER NDER MR

GSM 3.32 43.64 18.60 5.83 40.95 17.94 4.61 54.31 21.77 27.49 61.03 39.07 

AFE_FD 0.14 66.05 22.86 1.34 49.77 18.04 1.27 57.69 20.75 5.46 53.87 22.17 

AFE_WF 0.74 69.46 24.43 3.27 56.52 21.62 2.48 66.55 24.61 4.97 76.01 29.55 

FF+LDA 6.57 6.65 6.60 9.78 5.28 8.23 9.47 5.37 8.06 38.12 4.05 26.35 

Table 1 Detection errors for the different SADs for different distances from the speaker. In FF+LDA we used =0.5.
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4.5. Evaluation by ASR accuracy as a metric 

For ASR tests we used RAMSES, a speech recognition system 

developed at our research center. We use 539 demiphoneme 

units (half of a triphoneme; see [7] for details) modeled by two-

state semi-continuous HMMs. The codebook size was 512. The 

acoustic models were trained with the close-talking SPEECON 

data.

We used FF features with their first and second derivatives 

appended as speech parameters for ASR. A simple speech 

enhancement technique based on Spectral Subtraction (SS) was 

used to de-noise the signal. The information from SAD is used 

to update the noise estimate in SS. In addition, other two noise-

robust techniques developed at our center were used in 

combination with SS: the Vector Taylor Series noise 

compensation (VTS, [8]) and the Quantile based Histogram 

Equalization technique (QHE, [9]). These noise-robust 

techniques also benefit from the information provided by the 

used SAD system. 

In the previous tests, the FF+LDA and AFE_FD SAD 

systems achieved good performance in terms of NDER and 

SDER, respectively. We test these two SAD systems in our ASR 

tests. Labeling only the first 4 frames as non-speech was also 

tested as a simple SAD.  

Table 2 shows the word accuracy when employing the FF 

features with noise-robust techniques and different SAD 

systems. As a baseline, the results with only FF are reported. We 

can observe on 2-3 m Omni results that the robustness of the 

ASR system strongly improves when using the noise-robust 

techniques supplied by the speech/non-speech information from 

all SAD systems. The largest improvement is observed for the 

proposed FF+LDA SAD system. On the other hand, the close-

talk mike performance decreases dramatically for the tested 

systems, except for the FF+LDA SAD system, where a small 

decrease can be seen. 

Close-Talk 2-3 m Omni 

FF 

Baseline 97.17 25.11 

FF and SS+VTS+QHE 

4 frames 91.38 53.58 

AFE_FD 90.96 55.82 

FF+LDA 96.30 60.91 

Table 2 Word accuracy (%) for the combination of SS, VTS and 

QHE techniques using AFE_FD and FF+LDA SAD 

5. CONCLUSIONS

In this work, we proposed a robust speech activity detection 

algorithm based on the Frequency Filtering (FF) features. We 

illustrated by histograms that the measure obtained by applying 

Linear Discriminant Analysis (LDA) on FF features is more 

discriminative in speech – non-speech separation than the same 

measure based on cepstral features. 

We designed a tree classifier which automatically selects 

the most appropriate FF+LDA measures out of the time 

sequence of 31 measures covering about 330 ms of signal. 

During this process we observed the second most useful signal 

segment for speech/non-speech classification besides the current 

one is located in about 100 ms before the current signal segment. 

The importance of this observation is currently under 

investigation. 

Two kinds of metrics were used to evaluate the SAD 

algorithm: a set of general SAD metrics and the accuracy of an 

ASR system containing the evaluated SAD system. The tests 

were done on signals acquired by different microphones, 

including close-talking and 2-3 m distant microphones. The 

proposed SAD algorithm shows the best average results among 

all tested SAD systems for both the set of general SAD metrics 

and the ASR performance. 
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