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ABSTRACT

In this paper, we first propose a new channel adaptation method 

named spectral adjusting (SA) which adjusts the amplitude 

spectrum of the channel distorted speech with an adjusting 

function to reduce the channel distortion. Then, we combine 

Vocal Tract Length Normalization (VTLN), which warps the 

frequency scale of the speech spectrum to do speaker 

normalization, with SA to adjust and warp the speech spectrum. 

So the channel and speaker variations can be compensated for 

together. We call the combined method spectral adjusting and 

warping (SAW). In SA method, the adjusting function is 

approximated by a piece-wise linear function, and the 

parameters of the piece-wise linear function are estimated by 

Gradient Projection algorithm with short adaptation utterances 

based on ML rule. The evaluating experiments were carried out 

on telephone speech recognition in Duration Distribution Based 

HMM (DDBHMM) system. Experimental results showed that 

SA yielded a relative error rate reduction of 10.44% over the 

baseline, and SAW led to a greater reduction of 14.6%. 

1. INTRODUCTION 

One major source of degradation in speech recognition 

performance is channel mismatch. A communication channel or 

a transducer is a multiplying factor to the speech signal in the 

spectral domain. In the log spectral and the cepstral domain, it 

acts as additive bias.

There have been considerable interests in handling channel or 

convoluted noise, and recent approaches are focused on removal 

of cepstral bias. In this kind of method the channel is modeled 

as an additive bias vector in cepstral domain. The bias is 

estimated and subtracted from the distorted speech cepstral. In 

the commonly-used cepstral mean subtraction (CMS) method, 

the bias is simply the mean of the cepstral of the utterance. In 

signal bias removal (SBR) method [2, 3], the bias is estimated 

based on ML (SBR_ML) or MAP (SBR_MAP) rule. Since the 

cepstral features are commonly used in recent speech 

recognition research, the cepstral bias removal (CBR) method 

can be integrated to the speech recognition process without 

much additional calculation. However, for some cepstral features, 

e.g. MFCC (Mel-Frequency Cepstrum Coefficients), the channel 

mismatch can’t be simply expressed as additive distortion in 

feature domain. CBR method may be not proper for this kind of 

features. 

Besides, Zhao has assumed that the distortion channel can be 

modeled by an FIR filter in [4]. The parameters of the filter are 

estimated by EM algorithm in spectral domain. We called this 

method FIR_EM. Although modeling the channel more 

precisely than CBR, FIR_EM method brings complex 

calculation in spectral domain.  

The proposed spectral adjusting (SA) method is different from 

them. In this method, a channel adjusting function is defined in 

spectral domain, which adjusts the amplitude spectrum of the 

channel distorted speech to the “standard” spectrum when 

multiplied by the former. The adjusting function is approximated 

by a piece-wise linear function. Since the spectral characteristic 

of any channel or transducer in the real world varies smoothly 

along the frequency scale, it’s a good approximation just with 

small number of pieces, which means a few parameters to be 

estimated.  

For MFCC feature, the proposed method is supposed to be 

more effective than CBR because it deals with the channel 

distortion in spectral domain directly. On the other hand, the 

parameters of the adjusting function are estimated by Gradient 

Projection algorithm in MFCC feature domain but not in spectral 

domain, which, compared with FIR_EM method, reduces the 

calculation.

Besides channel mismatch, the variance in speakers is another 

source of performance degradation in speech recognition. VTLN 

is a widely used speaker normalization method which warps the 

frequency scale of the speech spectrum. Since both SA and 

VTLN deal with the speech spectrum, SA adjusts the spectrum 

amplitude, VTLN warps the frequency scale. We combine SA 

and VTLN to adjust and warp the speech spectrum, aiming to 

compensate for the channel and speaker variations together. We 

called this combination method as spectral adjusting and 

warping (SAW). 

The proposed methods were evaluated on the experiments of 

telephone speech recognition in DDBHMM [1] system. In the 

experiments, SA and SAW achieved 10.44% and 14.6% relative 

syllable error rate reduction over the baseline, while CMS, 

SBR_ML and VTLN led to the reduction of 8.48% ,6.16% and 

8.38%. The results showed that SA performed better than CMS 

and SBR_ML, and SAW is more effective than either SA or 

VTLN alone.

This paper is organized as follows. Section 2 gives the 

principle of SA in detail. In Section 3, the method of SAW as 

well as a brief introduction of VTLN is presented. In Section 4, 

the experiments and results are provided. Finally, we conclude 

the paper in Section 5. 

2. SPECTRAL ADJUSTING
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2.1 Theory analysis 
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Figure 1  Speech transmission  

Figure 1 illustrates the effect of a transmission channel on the 

speech. 

)(0 tx  denotes the original speech, )(th  is the impulse 

response of the transmission channel and )(ty  the output 

speech. )(0X , )(H  and )(Y  are their spectrum respectively. 

In time domain:              )(*)()( 0 thtxty                       (1) 

In spectral domain:       )()()( 0 HXY                     (2) 

Equation (2) shows that channel acts as a multiplying factor to 

speech in spectral domain. Spectral adjusting is based on this 

fact. In the following paragraphs, we specify the principle. 

For a special channel S with frequency response )(sH , let 

)(0 tx  be the original speech, tys
 the channel S’s output and 

)(0X ,
sY  their spectrum, then we have 

|)(||)(||)(| 0 ss YHX                       (3) 

and

|)(|/1|)(||)(| 0 ss HYX                 (4) 

That is, the distorted speech spectrum can be adjusted to the 

original speech spectrum when multiplied by the factor 

|)(|/1 sH  . Notice that the purpose of channel adaptation is to 

reduce the channel mismatch between the training and the 

testing data. If we adjust both the training and the testing speech 

amplitude spectrum to the “standard” spectrum, the mismatch 

can be reduced. Therefore, for the given channel S, an adjusting 

function
sF  is defined to satisfy:  

Nss YYF |)(|                          (5) 

Where 
NY  is the “standard” spectrum.  

If the adjusting function is found, the channel distorted 

spectrum can be adjusted to the “standard” spectrum by (5). If 

both the training and testing speech is adjusted in this way, the 

mismatch caused by channel variation can be reduced. 

Furthermore, the feature extracted from the adjusted spectrum is 

robust against channel distortions. 

Distinctly, the key point of this method is the mathematic 

form  of the adjusting function 
sF . In our work, the 

function is approximated by a piece-wise linear function as:  
L

l

l

s

ls haF
1

,...,L),(la s

l 210            (6) 

)(lh ),...,2,1( Ll  are triangle shaped overlapping filters 

spaced uniformly on frequency scale. The overlap percent is 50 

and each filter’s height is 1. s

L

ss aaa ,...,, 21

s
a  is nonnegative 

adjusting factor due to the property of amplitude spectrum 

(shown in equation (5)). Figure 2 shows the approximation of 

sF .

wFs
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Figure 2 Piece-wise linear interpolation of 
sF

As shown in equation (6), once a sa  is obtained, we could get 

a certain 
sF . Here sa  is estimated by minimizing objective 

function )( saJ .

),...,2,1(0..)(min LlatsaJ s

l

s                  (7) 

)( saJ  can be defined as the difference between 
ss YF )(

and
NY .

N

s ,)(J YYFdiff ss

For speech recognition, equation (7) is rewritten based on ML 

rule as: 

),...,2,1(0,,|argmax* LlaWtStOP la
a

s

    (8) 

Where tO sa
 is the speech feature vector sequence of the 

output utterance from channel S which is the function of the 

adjusting factor sa . W is the transcription,  the parameter set 

of acoustic models and tS  the state segment. Gradient 

projection method is used to estimate sa from equation (8). 

It should be noted that for a given channel, the adjusting 

function can be estimated with short utterance and then be 

applied to other utterances output from the same channel. 

2.2. Training and testing procedure 

The goal of the training procedure is to appropriately adjust the 

amplitude spectrum of the utterances for each channel in the 

training set. An iterative procedure is used to choose the best 

adjusting factor for each channel and build the acoustic model 

using the adjusted utterances. The procedure is described as 

follows:

1 Train the acoustic model 
0
 using unadjusted utterances, 

set j = 0. 

2 Estimate the best adjusting factor *a  for each channel via 

equation (8) with model 
j
, and then adjust the utterances with 

*a .

3 Train the new model 
1j
 using adjusted utterances. 

4 If not convergence, set j=j+1, go to step 2; otherwise, stop.

The convergence is judged by whether there is significant 

difference in the adjusting factors between two iterations. 

Typically, this procedure converges after about 3 iterations. The 

final model is defined as 
N

.
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The goal of the testing process is to adjust the spectrum of the 

testing utterance to match 
N

. Note that the transcription of 

adaptation data is not given, the recognition must be done firstly 

to get the transcription before the adjusting. The following 

process is used. 

1 Get the transcription of the adaptation utterance W and the 

state segment tS  by recognizing the utterance with 
N

.

2 get the best adjusting factor *a  with W and tS  via equation 

(8).

3 Adjust all the utterances from the same channel with 

adjusting factor *a  and recognize them. 

3. SPECTRAL ADJUSTING AND WARPING 

3.1 VTLN  

Vocal Tract Length Normalization (VTLN) [5-9] is an approach 

aiming to reduce the variance among speakers. Previous research 

has shown that the positions of spectral formant peaks for 

utterances of a given sound are inversely proportional to the 

vocal tract length. Therefore, vocal tract length normalization 

should yield formants which have less variability.  

An intuitive method of VTLN is to warp the spectrum in 

frequency axis. 

g'

This kind of VTLN is also referred as frequency warping 

(FWP) in [7]. The common choices of warping functions are 

linear, piecewise linear and bilinear functions. 

Linear function:
1ag                                  (9) 

Piecewise linear function 

0

0

1

ifcb

ifa
g

                     (10) 

Bilinear function 

cos11

sin1
tan2 1

a

a
g

                (11) 

The warping factor a  can be estimated based on two methods: 

formant-based [6,8,9] and ML-based [5,7]. In formant-based 

method, a  is chosen to normalize the formant positions in the 

spectrum of testing utterances to those in the “standard” 

spectrum. The main drawback of this method lies in the 

difficulty of estimating the correct formant positions. In ML-

based method, a  is searched from a discrete set of possible 

values to maximize the likelihood of the warped utterance with 

regard to the given acoustic model and the transcription. This 

approach is inefficient due to the exhaustive grid search.  

3.2 Spectral adjusting and warping 

In spectral adjusting and warping (SAW), we combine SA and 

VTLN to adjust and warp the speech spectrum, SA is used for 

adjusting the amplitude spectrum to reduce the channel 

mismatch, VTLN is used for warping the frequency scale to do 

speaker normalization.  

In the combination, SA is carried out in the way as described 

in Section 2. As for VTLN, Zhan and Westphal have proved the 

ML-based method performed better than formant-based one in 

their work [7]. Their experiments have also shown that the linear 

warping function, besides the appeal of simplicity, costs less but 

provides the best benefit. So we choose the linear warping 

function and ML approach to implement it when combined with 

SA. 

Since the estimation methods of adaptation factors are quite 

different between SA and VTLN, we did them one after another, 

and then iterated the procedure till reach convergence. 

4. EXPERIMENTS 

To evaluate the proposed methods, we first tested the 

performance of SA method on adjusting the spectrum with 

artificial communication channel distortion. Then, the real 

telephone speech recognition experiments were carried out to 

investigate the recognition performances of SA and SAW. We 

also compared them with CMS SBR_ML and VTLN. The 

following sub-sections outline the experiments. 

4.1. Spectrum adjusting testing 
To test the spectrum adjusting performance of SA method, the 

following experiment was carried out: First, the clean speech 

was passed through an artificial distorting communication 

channel. Then, the adjusting function was estimated for the 

distorted speech with one sentence as the adaptation data. In the 

end, the distorted speech was adjusted by the function and then 

recognized. We also did the adaptation on the distorted speech 

using SBR_ML method for comparison. 

The testing clean speech was from 863 speech database, 

totally 60 sentences uttered by three male. 

Figure 3 Distorting communication channel and the adjusting 

functions

 Clean Distorted SA SBR_ML

M1 28.86% 29.97% 28.71% 31.39% 

M2 35.38% 37.91% 35.92% 36.64% 

M3 24.77% 27.09% 24.92% 26.63% 

Average 29.67% 31.66% 29.85% 31.55% 

Table 1 syllable error rate of the clean speech, distorted speech 

and SA, CBR method 
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Figure 3 shows the communication channel amplitude 

spectrum and piece-wise linear adjusting functions with 12 

pieces (e.g. L=12) estimated for each speaker. It is shown that 

the adjusting function compensates for the communication 

channel spectrum very well for each testing person. The 

recognition results listed in table 1 further demonstrate this 

conclusion. As for SBR_ML, its performance is worse than SA. 

4.2 Speech recognition on telephone speech 

4.2.1 Baseline and database 
In our baseline recognition system, DDBHMM with Gaussian 

Mixture Distribution (GMD) acoustic model was used. The 

feature of utterance was 45-dimension vector: 14 Mel-frequency 

cepstral coefficients (MFCC), and their first and second 

derivatives, along with the power, its first and second derivatives. 

The telephone speech database was partitioned into training 

and testing data. The training data included totally 44,000 

sentences uttered by 880 speakers, 410 male and 470 female. 

The testing portion consisted of nearly 2000 sentences uttered by 

40 speakers, out of which 20 were male and 20 were female. 

We used syllable error rate (SER) as the performance measure.

4.2.2 Experiments using SA
In our experiments, we selected L=10 by testing different values 

from 5 to 30. In the training procedure, the process stopped after 

3 iterations. It should be pointed out that the channel 

characteristic (including record device and transmitting channel 

etc.) didn’t change utterance by utterance for the same speaker, 

thus the adjusting factors for each speaker could be estimated 

from a small number of utterances by the same person. In this 

test, the adaptation data was the first 5 sentences, about 20 

syllables. The short adaptation utterance assured the fast 

adaptation speed. 

 We also compared our method with CMS and SBR_ML, In 

CMS, for each sentence, the bias was the cesptral mean of this 

sentence. As for SBR, the first 5 sentences were used to estimate 

the bias, then, it was subtracted from all the sentences of the 

same speaker, just as in SA. Table 2 shows the average syllable 

error rates. SA performed better than CMS and SBR_ML. CMS 

outperformed SBR_ML due to the sent by sent adaptation 

method.

 SER Error Reduction 

Baseline  46.56% -- 

SA 41.70% 10.44% 

SBR_ML 43.69% 6.16% 

CMS 42.61% 8.48% 

Table 2 syllable error rate for SA, SBR_ML and CMS 

4.2.3Eexperiments using SAW 
In this test, we first adjusted the amplitude spectrum by SA. 

Then, VTLN was done to warp the frequency scale of the 

adjusted spectrum. The procedure was iterated till reach 

convergence. In SA, we also set L=10. For each speaker, the 

first 5 sentences were used to estimate the adaptation factors for 

both SA and VTLN.

The results presented in Table 2 shows that SAW performed 

much better than SA or VTLN alone. 

 SER Error Reduction 

Baseline 46.56% -- 

SA 41.70% 10.44% 

VTLN 42.66% 8.38% 

SAW 39.76% 14.60% 

Table 3 syllable error rate for SA, VTLN and SAW 

5. CONCLUSIONS 

Firstly, this paper described Spectral adjusting (SA) channel 

adaptation method which adjusts the speech spectrum with 

piece-wise linear adjusting function to reduce the channel 

mismatch. Then, the spectral adjusting and warping (SAW) 

method was introduced. In this method, we adjusted and warped 

the speech spectrum by the combination of SA and VTLN to 

compensate for the channel and speaker variation together.  

The telephone speech recognition results showed SA 

performed better than CMS or SBR_ML, SAW performed better 

than SA or VTLN alone, which indicated the idea of adapting 

the spectrum of speech in scale and amplitude for channel and 

speaker adaptation was helpful to get better performance in 

speech recognition. 
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