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ABSTRACT

In this paper, we present a subspace-based approach for speaker-
independent vowel recognition. Five vowels (/aa/,/eh/./iy/,/Jow/ and
/uw/) from the TIMIT database were considered for the task. The
subspaces representing two different vowel classes may have a large
common subspace due to speaker variability, noise and coarticula-
tion. We use common principal component (CPC) [1] and its ex-
tension i.e., partial-Common principal component (pCPC) to obtain
a specific subspace for each vowel which is insensitive to varia-
tions. We perform CPC analysis on the covariance matrices of the
vowels. pCPC gives ¢ eigenvectors which are common to all vow-
els and (p — gq) vowel specific eigenvectors. For each value of g,
vowel specific subspaces are obtained. An input vector from an un-
known vowel is classified based on the maximum length of its pro-
jection on the specific subspaces. We have choosen 18-dimensional
Mel-Frequency Cepstral coefficients as a feature in our recognition
task. The specific subspace is treated as a transformation matrix
which enhances the vowel-specific information in the feature vec-
tor and, inturn, increases signal-to-noise ratio. Recognition experi-
ments were performed on vowels extracted from a multiple speaker
set taken from different dialect regions in the TIMIT database. Re-
sults for each vowel-specific subspace are presented for different
values of g ranging from 1 to 5. The results are encouraging in the
context of a speaker-independent framework. Visual Analysis of the
vowel basis spectra provides useful and interesting information by
highlighting the importance of different frequency regions.

1. INTRODUCTION

Speech recognition plays an increasingly important role in voice
web technologies by allowing users to access web sites via tele-
phone using spoken commands. Efficient feature extraction is the
key to good performance in speech recognition. An efficient fea-
ture should be able to capture the variability in the data caused by
a desired source (DS) while suppressing the variability caused by
undesirable sources (UDS). In vowel recognition, it is highly desir-
able to have features which carry linguistic variability of a particular
vowel while suppressing the linguistic information of other vowels
and speaker variability. In this paper, a scheme to decompose the
feature space into subspaces which carry the lingustic variability of
a particular vowel is proposed.

Our approach is motivated from subspace-based vowel- con-
sonant segmentation [2] where speech segments are classified as
vowels and consonants. In this paper, we would like to identify the
unknown vowel segment. The recognition task is accomplished by
generating specific subspaces for each vowel that are relatively in-
sensitive to the UDS. This is done by estimating the directions in
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the feature space where the ratio of the DS variance to UDS vari-
ance for a given vowel is high. A conventional feature can then be
projected into this subspace to make it relatively insensitive to UDS.

2. FEATURE TRANSFORMATION

Existing techniques like LPC can model the statistical properties
of different vowel sounds. Here, if we consider a particular vowel
sound V; (where ¢ = 1,2,...,k and k is the number of vowels in
the training set) in the feature vectors as signal (DS) then the com-
plementary k — 1 vowel sounds V; (where j # %) are noise (UDS).
We present a linear transformation that aims at finding a subspace
of the feature space where the Signal-to-Noise ratio (SNR) is max-
imum. Such a decomposition can be arrived at by representing V;
and Vj by training vectors obtained from the TIMIT Database. The
directions in the feature space where the SNR is maximum can be
derived by the partial-Common Principal Component (pCPC) of the
covariance matrices of the above vectors. Consider a linear trans-
formation matrix W that maps the original feature vectors = onto

~

xT:

=Wz 1)
where z is an n-dimensional vector, Z is an m-dimensional vector
m < n, and W is an n X m matrix with m linear independent
columns. Let d; and d; represent the training vectors containing V;
and Vj respectively, in the original feature space. The covariance
matrices for the above training vectors can be written as

Ci = E[(di — di)(di — di)"] @)
= TOT
Cj = E[(dj — d;)(d; — d;)"]
where d; and d; represent the means of d; and d; respectively. We
wish to find W to maximize the ratio of the variance of V; to V;
after transformation. If the density function of the d; and d; are
assumed to be Normally distributed then their covariance matrices
after transformation are given by

C; = WOTCw®
C; =wOTe,w®

A simple measure of the variance or the “scatter” is the determi-
nant of the covariance matrix [4]. Thus the criterion function to be

3

maximized for an #** vowel sound is given by
G| worew®
oy 121w
JW/C) = ‘5 = \Wore,wo| “)
J

Here, the maximization has to be carried out for all j where j =
1,2,..,kand j # i. We get W after maximizing eq. 4 for each of
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Fig. 1. Variation of SNR with and without transformation as a func-
tion of feature dimension. (a) 712 (SNR between /aa/ and /eh/). (b)
Y13 (SNR between /aa/ and /iy/). (c) y14 (SNR between /aa/ and
Jow/). (d) y15 (SNR between /aa/ and /uw/).

the 4" vowel sounds and it spans the :* vowel subspace. The above
criterion function cannot be solved using Generalized eigenvalue
decomposition because the optimization has to be carried out for
more than two covariance matrices. To solve for W(i)’s, we use
the it specific component obtained from pCPC of C; where i =
1,2, ...k.

In [5], Malayath et al introduced a SNR measure, defined as the
ratio of these variances when original feature vectors are projected

onto wii):

yy = i Gl 5)
YT WO
If the first m eigenvectors are used, the SNR becomes
trace (W(i)TCiW(i)) ©

1= Yrace (WOTC; W @)

The SNR of the original feature vectors can be calculated from eq.
6 by making W@ an identity matrix. Figures 1(a) to 1(d) show the
SNR between V;(/aa/) and Vj(/eh/,/iy/,/ow/ and /uw/) before and af-
ter transformation for Mel-frequency cepstral coefficients (MFCC).
From the figures, it can be seen that the SNR of the transformed
feature vectors is substaintially higher than that of the original fea-
ture vectors. Since the specific vowel subspaces are spanned by the
eigenvectors after the 4th dimension (here, the first four eigenvec-
tors are common principal components), we have shown SNR start-
ing from the 5th dimension. Also, since the eigenvalues are ordered
as a decreasing sequence, the SNR after transformation decreases
with increase in dimension.

3. COMMON PRINCIPAL COMPONENTS

The common principal components (CPC)[1] model hypothesizes
that multiple datasets share common components, though each data-
set has different eigenvalues associated with those components. The
CPC hypothesis for k, p x p covariance matrices, X1, X2, ..., Xk,
is:

Y =BMBT,  i=1,.k (7

where B is an orthogonal pXx p matrix, and A; = diag(Ai1, ..., Aip)-
Note that a component may have a large eigenvalue associated with
one dataset, but a small eigenvalue associated with another dataset.
Hence there is no canonical ordering of the components by order-
ing them according to the size of their eigenvalues as in principal
component analysis. The common principal components model is
equivalent to postulating that the covariance matrices for the datasets
are simultaneously diagonalizable by the same orthogonal matrices,
i.e., the matrix of common components. The elements of the result-
ing diagonal matrices contain the respective eigenvalues. Thus:

B'SB = A; (®)
i = 1,...,k, where B and A; are defined as above. Note that
a necessary and sufficient condition for the existence of B is that
1,29, ..., X are commutable, that is, 3;%; = 3;3; for all ¢, 5.
The sample covariance matrices are modeled as

C; = BA;BT +U; )

where C; is the i*" (unbiased) sample covariance matrix and U; is
the #** matrix of error terms. We assume that the original measure-
ments follow a multivariate normal distribution and consequently
that (s; — 1)C; (s; is the sample size of the i*" dataset) follows a
Wishart distribution. Estimating equations are derived by maximiz-
ing the likelihood, subject to the constraint of orthogonality on B.
Solving the equations, we obtain the maximum likelihood solution
for B. The F-G algorithm [3] solves these equations, though with-
out guarantee of global optimality. The estimating equations are for
m,r=1,..,p,m#r.

k
BECiBm — B Cifr
ﬂﬁ( (si—l)( )0) B-=0 (10)

with ﬂjT,Bj = 1 and ﬂfﬂh = 0 for j # h, where 3; is the j*
column of B. Further, a likelihood ratio statistic is derived to test
for the significance of deviations from the model.

3.1. Partial-Commmon Principal Components (pCPC)

Flury [1] extends the CPC model by developing a partial-common
principal components model. The partial CPC model hypothesizes
that there are only g of p eigenvectors common to all 3;. The re-
maining (p — q) are specific to each dataset. That is

BTS;B; = A (1)
where B; are orthogonal matrices such that B; = [B; : Ba;], B:
is a p X q orthonormal matrix of ¢ common eigenvectors, and B;
are p X (p — q) matrices with (p — q) eigenvectors specific to the
itPdataset. Flury indicates that the maximum likelihood equations
solving this model are extremely laborious to implement. He rec-
ommends instead an approximate solution using the CPC estimates.
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Fig. 2. Vowel subspace sequences. (a)-(d) I-IV CPC sequences for
all the vowels. (e)-(1) Specific eigenvector sequences for vowel /aa/.

The method involves first obtaining approximate maximum likeli-
hood estimates of the common components, B, from the CPC es-
timates. Then the By; are obtained by finding B»; that diagonalize
C; subject to By; being orthogonal to B;. In our vowel recognition
experiment, we derive By and W(i)(: B, specific eigenvectors
for the i** vowel) for each vowel using pCPC. Plugging W@ into
eq. 6 maximizes the SNR for the i** vowel. We have already shown
SNR for vowel /aa/ wrt. all other vowels in Fig. 1. Common sub-
space sequences for all the vowels are shown in Figs. 2(a) to 2(d)
while Figs. 2(e) to 2(1) show the specific eigenvector sequence for
the vowel /aa/.

4. FEATURE TRANSFORMATION AS FILTERBANK

If we consider the transformation as a filter bank as was done in [2],
we get the relative importance of frequency bands for each vowel.
Now consider a N x N transformation matrix W ) such that
z=wig (12)
Let wl(i) be the 1** column of W®. The I** component of Z is the

inner product of & with wli). That is,

-1

N
z = wl(i)Tm = Z m(m)wffl)l
m=0

13)

where "'-’1(72)1 is the m*® component of wl(i). This summation can be

interpreted as filtering of z(n) advanced by N — 1 samples [6]:

h

Di(n) =Y w(n+N—1=mh(m)

=0

(14)
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Fig. 3. Frequency responses of the common and specific subspace
eigenvectors. (a)-(d) Spectral plots of I-IV CPCs. (e)-(1) Spectral

plots of specific eigenvectors of vowel /aa/.

where hl(l) (m) = w%lk m,1 are the impulse response coefficients
of the filter H l(l)(z). The sequences Z;(n) are obtained by down-
sampling the sequences z 1(n) by N. In the transform domain, the
convolution in eq. 14 can be written as

Xi(e?) = X(e) H{ () (15)
where H, l(l)(ej“’) is the I*" filter frequency response for the ‘"
vowel. We know that the LPC-Cepstrum is the inverse Fourier
transform of the logarithm of the all-pole LPC spectrum. Thus,
when the input features (n) are the LPC-cepstral vectors, X (e/*)
represents the log spectrum. Therefore, according to eq. 15, the
transformation process can be seen as a multiplication of the log
spectrum by the frequency response of the filters corresponding to
the largest eigenvalues which indicates the relative importance of
different frequency bands for the i** vowel. Spectral plots for com-
mon principal components are shown in Figs. 3(a) to 3(d) while
Figs. 3(e) to 3(1) show the specific component spectral plots for
the vowel /aa/. We have used LPC-Cepstrum for subspace spectral
plotting and MFCC as feature for recognition.

5. SUBSPACE-BASED RECOGNITION

The specific subspaces for all the vowels are obtained using pCPC.
The test signal is divided into overlapping frames and the feature
vector z; corresponding to the I** frame is obtained using MFCC.
We obtain the recognition result as follows. The length of the pro-
jection Z; on the vowel subspace W® is used as a similarity mea-
sure between the input vector £ and the class ¢. The input vector is
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Table 1. Recognition performance (in %) of specific vowel subspaces derived using pCPC.

Specific subspace for each vowel obtained with

g=1 q=2

q=3 qg=4 q=>5

Vowels | Train Test Train Test Train Test Train Test Train Test

/aa/ 7275 | 65.11 | 64.67 | 58.13 | 64.67 | 55.81 | 64.67 | 5891 | 61.37 | 52.71

/eh/ 55.99 | 47.16 | 58.05 | 57.54 | 58.80 | 53.77 | 56.92 | 54.71 | 57.11 | 56.60

liy/ 90.05 | 88.40 | 65.94 | 56.15 | 66.07 | 61.23 | 59.67 | 55.43 | 58.58 | 55.07

low/ 56.69 | 62.96 | 56.69 | 51.85 | 56.33 | 58.02 | 57.39 | 67.90 | 59.85 | 62.96

Jaw/ 71.60 | 55.55 | 62.96 | 51.85 | 59.25 | 51.85 | 55.55 | 55.55 | 58.02 | 44.44

then classified according to the maximal similarity value:

argmax
i=1,..,k

argmazx
i=1,..,k

1Z:]1% = W] 16)
We tested with the training dataset to determine the number of eigen-
vectors of W® in combination (for a particular value of g ) that
would give higher recognition rate. We found that the number of
eigenvectors of W in combination are different for different vowel
specific subspaces. It also varies with the value of ¢ (number of
common components). This suggests that the subspace dimensions
are different for different vowel sounds and also that a common sub-
space associated with each vowel is also different. We also found
that the recognition performance of the testing dataset follows the
same pattern as that of training.

6. RESULTS AND DISCUSSION

Vowel recognition experiments were conducted on the TIMIT data
base. This 8 major dialect regions of the United States. The speech
signals are stored in two major sets in the TIMIT database - “train”
and “test”, which are to be used for training and testing purposes,
respectively. The speech data in each set are further separated into 8
subsets, drl to dr8, according the speakers’ dialect regions. We have
selected 5 vowels /aa/,/eh/,/iy/,Jow/ and /uw/ from the continuous
sentences in the train set, dr3. dr3 contains 72 and 26 speakers for
training and test utterances, respectively.

Feature vectors were obtained for each frame of a vowel from
the train and test sets. The duration of each frame of speech was
30 ms, with an overlap of 20 ms between successive frames. Each
frame of speech was Hamming windowed and processed to yield
a 18-dimensional feature vector. For obtaing MFCC, the Mel-scale
was simulated using a set of 18 triangular filters. For LPC-Cepstrum,
an 18th order LPC analysis was performed after preemphasis with
a = 0.95. A covariance matrix was generated for each of the above
vowels from dr3. pCPC was performed on the vowel covariance
matrices. Here, for every vowel, ¢ (number of common principal
components for vowels) was varied from 1 to 5 and for each value
of g, specific subspaces were obtained. Feature vectors were ob-
tained for each frame of a test vowel.

Table 1 gives the speaker-independent vowel recognition per-
formance of our approach for g varying from 1 to 5. From the table,
we can see recognition performance of vowels /aa/, /iy/ and /uw/ is
better with ¢ = 1. This means that these vowels have less over-
lap between the other vowels. This is quite valid from the fact that
these vowels are placed at three corners of the classic vowel trian-
gle. For vowels /eh/ and /ow/ better performance is obtained when
specific subspaces are obtained by setting ¢ > 1. This shows that
these vowels have comparatively more than one CPC. The results
that were shown in Table 1 are from the dr3 train and test set. We
have also tested our algorithm with train and test datasets of the

Table 2. Confusion matrix for Vowel recognition using Vowel spe-
cific subspaces.

/aa/ | feh/ | fhy/ | low/ | luw/
/aa/ | 84 8 5 20 12
leh/ 35 122 | 21 19 15
fiy/ 8 23 244 1 0
Jow/ 5 11 0 55 10
faw/ 5 1 1 5 15

above vowels extracted from the TIMIT database, across all the di-
alect regions (drl to dr8). The recognition performances were al-
most similar to that one presented in Table 1. This connotes that
there is no drastic downfall in recognition performance with respect
to the train and test sets extracted from different dialect regions and
also with different speakers. Table 2 shows the confusions with our
vowel recognition scheme. The average recognition performance of
our scheme is 71.72%.

7. CONCLUSION

We have proposed a new subspace based approach for speaker in-
dependent vowel recognition. Our subspace based approach uses
pCPC to generate vowel specific subspaces. We have shown that
these vowel specific subspaces improve SNR of a feature vector.
The filter bank interpretation of the feature transformation throws
light on the relative significance of different frequency bands for a
particular vowel. We have shown speaker independent vowel recog-
nition peformance in Table 1 and also similar performances are no-
ticed for the test datasets across all the dialect regions.
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