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ABSTRACT

In this paper, we present a two-stage noise spectra estimation ap-
proach. After the first-stage noise estimation using the improved
minima controlled recursive averaging (IMCRA) method, the second-
stage noise estimation is performed by employing a maximum
a posteriori (MAP) noise amplitude estimator. We also develop
a regression-based speech enhance system by approximating the
clean speech with the estimated noise and original noisy speech.
Evaluation experiments show that the proposed two-stage noise
estimation method results in lower estimation error for all test
noise types. Compared to original noisy speech, the proposed
regression-based approach obtains an average relative word error
rate (WER) reduction of 65% in our isolated word recognition ex-
periments conducted in 12 real car environments.

1. INTRODUCTION

Noise spectra estimation plays a fundamental role in speech en-
hancement and speech recognition. Conventional noise estimation
methods, which are based on the explicit detection of voice activ-
ity, can be difficult in the case of varying background noise or if the
signal-to-noise (SNR) is low. In [1], a number of methods which
do not need any explicit voice activity detectors (VADs), such as
energy clustering, Hirsch histograms, low energy envelope track-
ing, and so on, are excellently summarized. With picking a quan-
tile value rather than the minima value, quantile based method [2]
can be viewed as a generalization of the minimum statistics (MS)
approach [3]. More recently, Cohen proposed an improved min-
ima controlled recursive averaging (IMCRA) approach [4] which
involved the use of minimum statistics and speech presence prob-
ability. On the other hand, once the estimated noise spectra are
obtained, one can employ an enhancement filter to estimate the
spectral amplitude (or component) of a speech signal in the sec-
ond stage, by assuming an ad hoc statistical model for speech and
noise [5] [6]. In this paper, we estimate the spectral amplitude
(or component) of the noise signal in a similar manner to that
used in speech spectral estimation in the second stage. There-
fore, a two-stage noise spectra estimation is developed. In light
of the statistical information for short-time spectral amplitude (or
component), the second-stage noise estimation can be expected to
yield a further improvement of estimation performance. In this
paper, specifically, we develop a second-stage maximum a posteri-
ori (MAP) noise amplitude estimator based on first-stage IMCRA
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noise estimation. However, the methods used in the first stage and
second stage are not limited, and can be extended to other types
of first-stage and second-stage noise estimators. The finally esti-
mated noise spectra can be further integrated into a speech enhance
system.

Among a variety of speech enhancement methods, spectral
subtraction (SS) [7] based methods and short-time spectral esti-
mation (STSE) based methods [5] [8] [6] are commonly applied.
Most of SS based methods make assumptions about the uncorrela-
tion of the speech and noise spectra, while the STSE based meth-
ods requre the assumptions about an ad hoc statistical model for
speech and noise. On the other hand, some feature mapping have
been implemented through look up tables [9], curve fitting [10] and
neural networks [11] [12] [13]. In the neural netwworks based fea-
ture mapping methods, the assumptions embedded in the SS and
SETE methods can be released. The approach described in this pa-
per uses neural networks to approximate the log spectral of clean
speech with the inputs of the log spectra of the noisy speech and
estimated noise. While other neural network based enhancement
or compensation methods are implemented in time domain [11]
or in cepstrum domain [12], the proposed method is a minimum
mean square error (MMSE) estimator in the log spectral domain,
since MMSE criterion in the log domain is more consistent with
the human auditory system and distance metrics used in speech
recognition system [13]. The proposed method differs from [13]
in that we employ more general regression model with less input
parameters. While the previous works are usually evaluated on the
simulated noisy data, i.e., by artificially adding the noise to the
clean speech, the proposed approach is evaluated using realistic
in-car stereo data in 12 car environments.

The organization of this paper is as follows: In Section 2,
we present the proposed algorithms including a noise amplitude
estimator and the regression method. In Section 3, we evaluate
the proposed two-stage noise estimation method. In Section 4,
the regression-based in-car speech recognition experiments are de-
scribed. In Section 5, we summarize this paper.

2. ALGORITHMS

2.1. MAP noise amplitude estimator

We assume that the noisy signal x(i) is given by s(i)+n(i) , where
s(i) is the clean speech signal which is assumed to be independent
of the additive noise n(i). By using short-time Discrete Fourier
transform (DFT), in the time-frequency domain we have

X(k, l) = S(k, l) + N(k, l),
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where
X(k, l) = R(k, l) exp{jϕx(k, l)},
S(k, l) = A(k, l) exp{jϕs(k, l)},
N(k, l) = B(k, l) exp{jϕn(k, l)},

with the frequency bin index k and the frame index l. We will
drop both the frequency bin index k and the frame index l in this
subsection, for compactness.

The MAP noise amplitude estimator is given by

B̂ = argmax p(R|B)p(B), (1)

where p(·) denotes a probability density function (pdf). Let us
assume complex Gaussian models for noise and speech spectral
components with variances λn = E{|N |2} and λs = E{|S|2},
respectively, where E{·} denotes the expectation operator, and the
variances of their real and imaginary parts are λn/2 and λs/2
respectively. We then have a Rician likelihood p(R|B) and a
Rayleigh prior p(B) as

p(B) =
2B

λn
exp(−B2

λn
); (2)

p(R|B) =
2R

λs
exp(−B2 + R2

λs
)I0(

2RB

λs
), (3)

where I0(z) = 1
2π

� 2π

0
exp(z cos θ)dθ is the 0-order modified

Bessel function of first kind. The 0-order modified Bessel func-
tion of first kind can be approximated as I0(z) ≈ ez/

√
2πz. For

obtaining the noise amplitude estimator, the requirement that the
gradient of log[p(R|B)p(B)] with respect to B vanishes yields

2(
1

λn
+

1

λs
)A − 2R

λs
− 1

2B
= 0. (4)

Therefore, the gain function for the noise amplitude estimator can
be obtained as

GN =
B̂

R
=

1

2(1 + ξ)
+

����� 1

2(1 + ξ)

�2

+
1

4γ(1 + 1
ξ
)
, (5)

where the a priori and a posteriori SNRs are defined as ξ =
λs/λn and γ = R2/λn respectively [5].

2.2. Regression based enhancement

Let s(i), n(i) and x(i) denote the reference clean speech, noise
and the observed signals. (Note that it is not necessary to assume
x(i) = s(i)+n(i). A wide range of distortions, including nonsta-
tionary distortion, joint additive and convolutional distortion, and
even nonlinear distortion can be handled.) By the application of
a window function and analyzed using short-time Fourier trains-
form, in the time-frequency domain we have S(k, l), N̂(k, l) and
X(k, l), where k and l denote the frequency bin index and the
frame index, and the hat above N denote the estimated version.
After the mel-filter-bank (MFB) analysis and the log operation,
we obtain S(L)(m, l), X(L)(m, l) and N̂ (L)(m, l), i.e.,

S(L)(m, l) = log
�

k

rm
k |S(k, l)|,

X(L)(m, l) = log
�

k

rm
k |X(k, l)|,
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Fig. 1. Averaged NDR values for the IMCRA and the two-stage
IMCRA+MAP noise estimators.

N̂ (L)(m, l) = log
�

k

rm
k |N̂(k, l)|,

where rm
k denotes the weights of the mth filter bank. Let Ŝ(L)(m, l)

denote the estimated log MFB ouput of the mth filter bank at
frame l, and it can be obtained from the inputs of S(L)(m, l) and
N̂ (L)(m, l) by employing multi-layer perceptron (MLP) regres-
sion method, where the network with one hidden layer composed
of 8 neurons is used, i.e.,

Ŝ(L)(m, l) = bm +
8�

p=1

�
wm,p tanh

�
bm,p + wx

m,pX(L)(m, l) + wn
m,pN̂ (L)(m, l)

��
,(6)

where tanh(·) is the tangent hyperbolic activation function. The
parameters Θ = {bm, wm,p, wx

m,p, wn
m,p, bm,p} are found by min-

imizing the mean squared error:

E(m) =

L�
l=1

[S(L)(m, l) − Ŝ(L)(m, l)]2, (7)

through the back-propagation algorithm [14]. Here, L denotes the
number of training examples.

Although both the proposed regression-based method and log-
spectra amplitude (LSA) estimator [8] employ the MMSE cost
function in the log domain, the former makes no assumptions re-
garding the distributions of the spectra of speech and noise. Note
that the spectra of noise are estimated in the DFT domain, and then
are transformed into log MFB domain as input parameters. The re-
gression on log MFB outputs is to take into account the correlation
among the neighboring frequency bins, and it results in small com-
putation amounts, which is suitable for speech recognition.

3. EVALUATION OF NOISE ESTIMATION

The noise signals used in our evaluation are taken from the Noi-
sex92. They include white noise, pink noise, car noise and F16
cockpit noise. The speech signals include 100 Japanese phoneti-
cally balanced sentences (10 sentences for each of 5 female speak-
ers and 5 male speakers), which are recorded using a close-talking
microphone when the car is stopped with the engine running (a
part of CIAIR in-car speech corpus [15]). The speech signals are
degraded by various types of noise with SNRs in the range [-5,
15] dB. Speech signals are digitized into 16 bits at a sampling fre-
quency of 16 kHz. The spectral analysis is implemented with ham-
ming window of 32 ms (512 samples) and a shift of 16 ms.
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Fig. 2. Averaged segmental SNR improvement for the enhanced
speech using the IMCRA and the two-stage IMCRA+MAP noise
estimators.

To compute the gain function in (5), λn is obtained by the
IMCRA method [4]. A priori SNR is calculated by the well-known
“decision-directed” approach [5]. We compare the noise spectral
estimation performance using the noise-to-deviation ratio (NDR),
which is defined as

NDR [dB] = 10 log10

�
l

�
k[λn(k, l)]2�

l

�
k[λn(k, l) − λ̂n(k, l)]2

, (8)

where λn and λ̂n denote the reference noise power spectral and the
noise power spectral as estimated by the tested method, and L is
the number of frames in the analyzed signal. Fig. 1 presents the re-
sults of NDR values averaged over [-5, 15] dB by the IMCRA and
the proposed IMCRA+MAP estimators for various noise types. It
shows that the latter estimator obtains significantly higher NDR
values.

We also examine the performance of the proposed estimation
method when integrated into a speech enhancement system. We
applied a MAP speech amplitude estimator [16] for speech en-
hancement, in which the gain function can be obtained in a similar
manner to the MAP noise amplitude and is given as

GS =
Â(k, l)

R(k, l)
=

1

2(1 + 1
ξ
)

+

����� 1

2(1 + 1
ξ
)

�2

+
1

4γ(1 + 1
ξ
)
.

(9)
Note that the difference between Equation (5) and Equation (9).
We measure the resulting enhanced speech using segmental SNR
defined as

SegSNR [dB] =
10

L

L�
l=1

log10

�
j [s(l, j)]

2�
j [s(l, j) − ŝ(l, j)]2

(10)

where s and ŝ denote the reference clean speech and enhanced
speech respectively. L is the number of frames in one utterance.
Fig. 2 summarizes the results of the segmental SNR improve-
ment for various noise types (averaged over [-5, 15] dB for each
type). The enhanced speech obtained by using the proposed IM-
CRA+MAP noise estimators consistently yields a higher improve-
ment in the segmental SNR for all noise types.

4. IN-CAR SPEECH RECOGNITION EXPERIMENTS

The speech data used is from CIAIR in-car speech corpus [15].
The speech at a close-talking microphone (recorded by wearing a
headset) is referred to as clean speech. The speech captured by

recognition
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Fig. 3. Diagram of regression-based speech recognition.

a microphone at the visor position is used for recognition exper-
iments. Speech signals are digitized into 16 bits at a sampling
frequency of 16 kHz. For spectral analysis, 24-channel mel-filter-
bank (MFB) analysis is performed on 25 millisecond-long win-
dowed speech, with a frame shift of 10 milliseconds. Spectral
components lower than 250 Hz are filtered out because the spectra
of the engine noise are concentrated in the low-frequency region.
Then log MFB parameters are estimated. The estimated log MFB
vectors are transformed into CMN-MFCC vectors using Discrete
Cosine Transformation (DCT), and then the time derivatives are
calculated. The final feature vectors used in the recognition sys-
tem consist of 12 CMN-MFCCs + 12 � CMN-MFCCs + � log
energy.

We performed isolated word recognition experiments on the
50 word sets under 12 real car driving conditions (3 driving envi-
ronments × 4 in-car states as listed in TABLE 1). Fig. 3 shows a
block diagram of the regression-based speech recognition system.
For each driving condition, the data uttered by 12 speakers was
used for learning the regression weights and the remaining words
uttered by 6 speakers (3 male and 3 female) were used for open
testing. 1,000-state triphone Hidden Markov Modes (HMMs) with
32 Gaussian mixtures per state, trained with a total of 7,000 pho-
netically balanced sentences collected at the visor microphone (3,600
were collected in the idling-normal condition and 3,400 were col-
lected while driving the DCV on the streets near Nagoya univer-
sity (city-normal condition)), were used for acoustical models. We
also applied the MAP speech amplitude estimator (Equation (9))
for comparison.

Fig. 4 shows the performance for recognizing different speech
(averaged over 12 driving conditions). Compared with original
speech, the enhanced speech using (9) provides a significant im-
provement compared to the original speech. The proposed regres-

Table 1. 12 driving conditions
idling

driving environment city
expressway
normal

in-car state air-conditioner (AC) on low level
air-conditioner (AC) on high level
window (near the driver) open
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Fig. 4. Averaged word recognition performance for different
speech.

sion method yields furthermore higher recogntion accuracy. Using
the two-stage IMCRA+MAP noise estimator provides a improve-
ment in recognition accuracy compared to original IMCRA noise
estimator. The regression method with IMCRA+MAP noise es-
timator performs best and achieves an accuracy of 91.7%, which
obtains an average relative word error rate (WER) reduction of
65%, compared to original noisy speech.

The effectiveness of the approximation by regression is ver-
ified from the viewpoint of the signal-to-deviation ratio (SDR),
which is given by

SDR [dB] = 10 log10

�
l

�
m[S(L)(m, l)]2

�
l

�
m[S(L)(m, l) − Ŝ(L)(m, l)]2

,

(11)
where S(L)(m, l) and Ŝ(L)(m, l) denote the reference log MFB
element from the close-talking microphone and the estimated log
MFB element respectively. L denotes the number of frames during
one utterances. The SDR values are averaged over the number of
utterances. Table 2 shows the SDR values obtained using different
methods. SDR values are further improved considerably by using
IMCRA+MAP noise estimators, compared with the improvement
achieved using IMCRA estimators. The regression method using
the IMCRA+MAP noise estimator yields the highest SDR, which
results in an improvement of approximately 4 dB compared with
that of the original speech. These results clearly demonstrate the
effectiveness of the regression method.

5. SUMMARY

In this paper, a two-stage noise spectra estimation approach and
a regression-based speech enhancement approach are proposed.
The second-stage enhancement-filter-like noise estimation is per-
formed after the first-stage conventional noise estimation. In the
proposed regression-based speech enhance system, the log spectra
of the clean speech are approximated by using those of the esti-
mated noise and the original noisy speech. Lower estimation er-
rors are obtained by using the proposed two-stage noise estimation
method. Use of the regression-based method results in a significant
improvement in recognition accuracy.
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