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ABSTRACT

This paper addresses the problem of bandwidth expansion 

for the purpose of robust speech recognition. We show 

that an HMM-based ASR engine trained with full 

spectrum range data (0-8kHz) can successfully perform 

speech recognition tasks over band-filtered test data 

compensated by means of a series of simple MFCC 

parameter corrector functions. The problem is important 

when ASR is employed for audio streams of unknown 

frequency bandwidth common in spoken document 

retrieval. Evaluation is based on recognition rates. 

Accuracy varies depending on the width and spectral 

regions eliminated, but the system shows great advantages 

over the use of uncompensated filtered test data. The 

theoretical maximum recognition rates using corrector 

functions over filtered test data are very close to the base 

rate (unfiltered data) even when the greatest part of the 

spectrum of the original data is suppressed. These rates 

are even better than those obtained in the matched 

train/test HMMs with filtered data. 

1. INTRODUCTION 

The problem of frequency bandwidth extension is largely 

treated in the area of narrow-band speech enhancement. 

Many studies are motivated by telephone companies 

interested in the reconstruction of wideband speech (with 

frequencies ranging 0.05-7kHz) from a limited band-

width transmission (0.3-3.4kHz). Low-band and high-

band signal representations are inferred from the 

transmitted region, assuming a high degree of correlation, 

and are added to the input signal to reconstruct a 

wideband signal [1,2]. Similar studies exist for in-vehicle 

communications and other noisy environments [3,4]. 

Some of these studies have considered performing 

experiments using reconstructed speech with an extended 

frequency bandwidth; however, there has been limited 

literature specifically addressing the issue of bandwidth 

extension to improve ASR rates. 

There are different situations where an ASR system 

trained with full-band data might be required to perform 

recognition with band-filtered unknown data. In this case, 

recognition performance is severely degraded. 

Portable systems such as PDA’s or mobile phones are 

likely to receive different bandwidth input signals (e.g., 

downloading media content from the Internet). Small 

footprint ASR engines are most suitable here, due to 

memory limitations. Thus, training multiple HMM sets at 

different bandwidths is not desirable. 

Spoken document retrieval is another field that can 

benefit from our approach. The National Gallery of the 

Spoken Word contains historical speech records from the 

past 100 years, sampled at different rates [5]. Broadcast 

news recordings may contain audio with different 

bandwidths, for example when the news anchor talks with 

a field correspondent [6]. One major advantage of our 

approach is its high speed compared to training new 

models or using an HMM adaptation method. This allows 

a quick solution for rapidly changing environments.  

Compensation of filtered data might also be useful in 

microphone mismatch in speaker identification [7], on-

board car ASR [8] and extraction of the gist of activity in 

air traffic control [9] (where small airplanes may transmit 

with limited communication bandwidths).  

Our problem is different from that of bandwidth 

extension for telephone communications in that there is no 

need for voice reconstruction. Thus, the cost and 

complexity needed to generate naturally sounding speech 

is avoided and the focus shifts to only spectral content. 

For the same reason, we are able to treat the problem 

directly in the MFCC domain, which considerably reduces 

computational costs. 

2. MODELING THE EFFECT OF FILTERING IN 

THE MFCC DOMAIN 

Our objective is to compensate restricted frequency input 

data for use in a generic ASR system without strong 

degradation in recognition rates. To achieve this, corrector 

functions are applied over the parameterized realization of 
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the input data. The front-end employs pre-emphasis

filtering ( =0.97), using 25ms Hamming analysis

windows with a 10ms window shift. The frame sequence

is processed by using a bank of 26 triangular filters 

uniformly distributed in the Mel-Frequency scale along

the region 0-8kHz. Finally, 13 MFCCs are computed

(including C0) as well as their first and second 

derivatives. The use of a front-end based on a filter bank

allows us to easily treat the problem in the MFCC domain.

Let us denote the output of each of the 26 Mel-

Frequency filter bank channels as fbankj (j = 1,…,26).

The MFCCs are computed from these values as [10]: 
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where Aij represents the constant and the cosine function.

The effect of using filtered speech instead of the

unfiltered version can be modeled as a multiplication of

each of the values fbankj by a number, aj, and the addition

of an error term, ej. This term models the unaccounted

effects of filtering on all the speech processing and the

errors due to the use of an FFT. The modified outputs of 

the filterbank, can be expressed as:
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Then, for the filtered speech, eq. (1) becomes:
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In our experiments we use a  for unfiltered and

 for filtered channels (this is valid for modeling

both filtering and added frequency regions for

oversampled data). Thus, the differences between the

MFCCs of the unfiltered and filtered versions are: 
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where F represents the group of filtered channels. 

Assuming that 
j j

fbanke , the sum over the unfiltered

channels in eq. (4) disappears. As , for the filtered

channels,
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Thus, the differences in the MFCCs vary depending

on the error values, ej, as well as the energy of the original

signal in each channel, fbankj, and the filtered channels.

We represent this dependence in terms of phonemes

(namely a different correction is applied to each phoneme

according to its spectral features in the filtered regions) 

while an unsupervised dependence based on classes could

also be considered [11]. Intuitively, a low-pass filter will

not seriously affect voiced phonemes (having most of

their energy in low-frequency regions), but will more

severely impact unvoiced phonemes such as fricatives.

3. COMPUTING COMPENSATION FUNCTIONS 

FROM FILTERED SPEECH 

The most direct and precise way of computing

compensation functions in the MFCC domain is

comparing the MFCCs obtained from unfiltered and

filtered speech for each phoneme. This way, both the

dependence on the phonemes and the error term in eq. (5) 

are modeled. In our experiments, compensation functions

are obtained by mapping unfiltered to filtered data using

the TIMIT training partition. For each file, both the

filtered and unfiltered versions are parameterized, thus

generating a filtered frame for each frame of the unfiltered 

file. Data time-labels are available so it is possible to

identify each frame window with its corresponding 

phoneme. This allows a different mapping for each 

phoneme and MFCC parameter (as suggested by eq. (5)). 

Compensation functions are computed as the 5th order 

polynomial fits of this mapping procedure. Fig.1 shows an

example for phoneme /ae/, MFCC coefficient C4 and

4kHz low-pass filter. The compensation function is

plotted too. Although eq. (5) shows that the compensation

should be dependent on the energy distribution, for 

practical reasons it is desirable to have also a general

phoneme-independent compensation computed on data

from all the phonemes. This less precise compensation has

the advantage of being applicable to all phonemes.

4. COMPUTING COMPENSATION FUNCTIONS 

FROM FILTERED FBANK CHANNELS 

A less precise but much more efficient (in terms of 

computation) way of generating the compensator

functions is ignoring the error term in eq. (5) and 

assuming that the filtering operation can be modeled as a

multiplication of the outputs of the filter-bank channels
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(Mel-Frequency Energies, MFEs) by the filtering

coefficients, aj, dependent only on the filter applied. In

order to avoid values near zero in the log calculation, a

floor value is used for the argument of the logarithm. A 

block diagram of this strategy is shown in Fig.2.

As discussed in Sec.2, filtering the MFEs is an

approximation to filtering the training sound files and 

finding the MFE coefficients of the filtered data. However

this is much faster than filtering the sound files. From the 

MFE coefficients it is straightforward to obtain the

MFCCs, and mapping is performed as in Sec.3.

5. IMPLEMENTATION 

As will be shown, the compensation functions do model

the transformation of the MFCCs very successfully.

However, the main problem for ASR implementation is to

know which phoneme compensation formula (which 5th

order polynomial fit) to apply in each frame of the 

unknown input utterance. Ideally, different compensations

should be applied for each phoneme, but before

recognition there is no information on the phonemes and

boundaries. We propose the block diagram system in

Fig.3. First, a general compensation (based on data from

all the phonemes and silences) is applied over the input

MFCC representation. Phoneme-level speech recognition 

follows, generating several transcription candidates. Each

candidate allows to create a different phoneme-specific

compensation of the original. A word-level ASR is then 

applied over each of the compensated versions and the 

best is chosen as in a ROVER system [12]. 

6. RESULTS AND DISCUSSION 

Evaluation is performed using HTK tools [10]. An HMM-

based ASR engine is trained using the training partition of

TIMIT. Fifty-one models (3 states with 15 Gaussian

mixtures each) are trained including short-pause and 

starting and ending silences. The front-end features are 13 

MFCC coefficients with C0 and their respective first and 

second derivatives for a total of 39 parameters.

Figure 2: Compensator functions calculated filtering

MFC coefficients. 

Figure 1: Polynomial fit for MFCC 4 of phoneme /ae/.

Low-pass 4kHz filter. Table 1 is a summary of results for different 

bandwidth filters. Here, the base system refers to

unfiltered full-band 8kHz data. Specific correction implies

the use of time labels in the correction phase followed by

an unsupervised ASR. General correction functions are 

those calculated with data from all phonemes. ROVER

refers to the 2-stage correction scheme in Fig.3. For the

case of 2-4kHz band-cut, a test has been run for specific 

correction formulas obtained by filtering the MFEs of the

training data (Sec.4). 

For each evaluated filter, uncompensated filtered data

represents the starting accuracy rate and the base system

accuracy rate is the maximum attainable.

Specific correction results are very close to those of

the base system even for the case of 2kHz low-pass filter

(i.e. trained with 8kHz bandwidth data and tested with

2kHz bandwidth data). This means that corrector 

functions are capable of modeling the shift in the MFCCs 

due to data filtering. For the cases of low-pass 4kHz and

2kHz, we show the accuracy rate obtained by model

adaptation using an MLLR+MAP schema [10] and HMM

training with filtered data. Specific correction performs

better than either of the other two, proving the ability to

recover some of the information lost by filtering.

However, the application of phoneme-specific correction

is not straightforward in real conditions.

General correction is equivalent to applying a general

rotation to the MFCC space. This is applicable in real

situations but its performance strongly depends on the

frequency bands eliminated, as shown in Table 1. 

The 2-stage ROVER correction schema proves 

successful for low-pass 6kHz and 4kHz filters (with rates

similar to those of model adaptation and filtered data

HMM training). The success of this method is highly

correlated with a successful general correction. 

Finally, evaluation of the corrector functions

computed by filtering MFEs (for 2-4kHz band-cut filter),

shows a slightly reduced recognition rate (compared to
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specific compensation functions calculated from filtered

speech files) due to ignoring the error term in eq. (3). 

Figure 3: Real case implementation.

7. CONCLUSIONS AND FUTURE WORK 

We have shown the potential importance of narrow band 

data enhancement for robust speech recognition. 

Corrector functions mapping filtered realizations to their

corresponding unfiltered versions show very promising

results even in the case of large band filtering. Specific

correction results proved superior to those for model

adaptation or training of models with filtered data.

Throughout this work we focused on adapting an MFCC

based front-end,  keeping  the base models untouched.

More work is needed for use in real situations,

especially for large band filtering. However, in situations

such as ASR for enrollment of unknown audio in spoken

document retrieval the ability to overcome varying

frequency bandwidths can significantly improve text

transcription results. The accuracy rate is still far from the 

theoretical maximum (phoneme-specific correction) due 

to the difficulty of finding phoneme locations and

boundaries. The first stage (general correction) in the

ROVER scheme has to be improved so that the effective

phoneme-specific corrections can be adequately applied.
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