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ABSTRACT

This paper addresses the selection of robust lip-motion features for
audio-visual open-set speaker identification problem. We consider
two alternatives for initial lip motion representation. In the first
alternative, the feature vector is composed of the 2D-DCT coef-
ficients of the motion vectors estimated within the detected rec-
tangular mouth region whereas in the second, lip boundaries are
tracked over the video frames and only the motion vectors around
the lip contour are taken into account along with the shape of the
lip boundary. Experimental results of the HMM-based identifica-
tion system are included for performance comparison of the two
lip motion representation alternatives.

1. INTRODUCTION

It has been a common practice to use lip information for speech
recognition applications [1, 2, 3]. This is justified by the obser-
vation that the lip movement is highly correlated with the audio
signal, and the speech content can be revealed through lip-reading.
As far as speech is concerned, it is usually sufficient to extract
the principal components of the lip movement and to establish a
one-to-one correspondence with the phonemes of speech and the
visemes of lip movement. It is quite natural to assume that lip
movement would also characterize the identity of an individual as
well as what the individual is speaking. [4] is one of the recent
works showing the improved performance of speech-lip fused sys-
tems over those of speech-only systems. For the speaker identifica-
tion problem however, the use of lip motion is a more sophisticated
issue and has been addressed in only few works such as [4, 5, 6].
The main reason for this is that the principal components of the lip
movement are not usually sufficient to well discriminate the bio-
metric properties of a speaker. High frequency or non-principal
components of the signal should also be valuable especially when
the objective is to model the biometrics, i.e. specific lip move-
ments of an individual rather than what is uttered. The success of
a lip-based speaker identification system depends very much on
the accuracy and precision of lip tracking and/or lip motion esti-
mation procedure.

In audiovisual speech/speaker recognition literature, there ex-
ist basically three alternatives for initial representation of lip-motion
features: 1) the use of raw intensity values on the rectangular grid
of the mouth region [2, 4], 2) the use of motion vectors instead
of intensity values [5, 7] and 3) the use of lip shape parameters
[6]. The first option represents the lip motion only implicitly along
with some texture information that might sometimes carry useful
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discrimination information; but in many occasions the texture may
also corrupt the identification task since it is very sensitive to ac-
quisition conditions. Moreover, texture information can more ad-
equately be incorporated to a recognition system via a multimodal
fusion system [4, 5]. Thus, in this paper we rather focus on the
second and third options where the lip motion is more explicitly
and adequately represented. The last option seems to be the most
powerful one, but only with the condition that the lip contour can
accurately be tracked. However, this is a very challenging task
especially in adverse circumstances since lip contour tracking al-
gorithms are in general very sensitive to lighting conditions and
image quality; in such cases, detection of the rectangular mouth
region is relatively an easier task to accomplish.

In our work, we consider two different scenarios. In the first
one, the rectangular mouth region is first to be detected and then
the mouth movement is represented by the motion vectors com-
puted on a predefined rectangular grid within this region. Thus, no
explicit information about the lip shape is included in the feature
vector. The main disadvantage of this strategy is that some irrele-
vant noisy motion vectors may show up especially inside the inner
lip boundary as parts of this region are occluded or uncovered dur-
ing the speaking act. In the second scenario, the lip boundary has
to be tracked over time and only motion of lip boundary pixels are
taken into account. In this way, noisy motion vectors are mostly
eliminated at the cost of disregarding some useful motion informa-
tion around the lip. One advantage of this strategy is that extracted
lip shape information can explicitly be included and exploited in
the feature set. However, as stated before and demonstrated in our
experiments, robustness issue in lip contour tracking is still an un-
solved problem.

The success of a lip-based speaker identification system even-
tually depends on how much of the obtained precision, that is
useful for discrimination, is then included in the reduced low-
dimensional feature set. In this work, the dimension of the ini-
tial lip feature vector is reduced by using the 2D-DCT and may
be further subjected to a two-stage discrimination analysis so as to
exploit both temporal and spatial correlations [7].

2. LIP-MOTION FEATURE EXTRACTION

2.1. Lip Contour Tracking

There are a number of approaches such as splines, active contours,
and parametric models in the literature in order to represent and
extract the lip contour. Classical active contours and splines suf-
fer from complex parameter tuning and they are mostly unable to
perfectly fit to the characteristic lip parts such as Cupidon’s bow
because of the erroneous gradient information due to illumination
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differences.
Eveno et al. [8] proposed to fit cubic polynomials on the outer

lip contour using the color information of the lip image. In this
technique a preprocessing stage to find predefined 6 key points on
the lip is followed by an optimization stage in which four cubic
polynomials and two lines are fitted to the outer lip contour.

The preprocessing stage includes computing the pseudo hue
component h(x, y) at pixel (x, y) for lip segmentation,

h(x, y) =
R(x, y)

G(x, y) + R(x, y)
(1)

where R(x, y) and G(x, y) are the red and green color compo-
nents at pixel (x, y), respectively. Furthermore, the ”hybrid edges”
concept for upper and lower lip localization is introduced in the
preprocessing,

Rtop = ∇[hN (x, y) − LN (x, y)]

Rmid = ∇[LN (x, y)] · hN (x, y) (2)
Rlow = ∇[hN (x, y) + LN (x, y)]

where hN (x, y) and LN (x, y) represent the normalized pseudo
hue and the normalized intensity components respectively.

Two key points on the lip corners, three points for the Cupi-
don’s bow and the last one on the lower lip together constitute the
6 points to characterize the lip shape. In our implementation, the
three points on the Cupidon’s bow are automatically found by esti-
mating the Cupidon’s bow boundary by an edge tracking algorithm
and then using the local maxima and minima of the function:

d(x) =

ytop+δ∑

y=ytop−δ

[hN (x, y) − LN (x, y)] (3)

as in [8], where [ytop − δ, ytop + δ] locates the upper lip boundary
strip. Furthermore, the lip corners are also placed in the same
manner using the minima of the intensity component computed
along each vertical pixel group.

The technique proposed in [8] works well only under some
assumptions on the acquisition environment and illumination con-
ditions. However in many practical conditions such as ours, these
assumptions do not hold. When tested on our visual database, the
algorithm fails in about one-third of the sample video sequences.
The lack of discriminative color information, especially on the
lower lip boundary, becomes occasionally so severe that even a
human eye can hardly make a distinction. Thus we use a quasi-
automatic strategy that needs user interaction. In cases where
the algorithm fails, the tracking task is assisted with some hand-
labeled points on the lip boundary.

The modeling stage is then basically a least-squares (LS) opti-
mization task on the color information to find the four cubic poly-
nomials, two for the upper lip boundary and the other two for the
lower lip boundary [8]. More specifically, when there is not any
assistant point, the LS stage finds the best fitting polynomial using
only the end points m(x, y), n(x, y), and k(x, y). However, if the
user needs to put an assistant point for one of the polynomials, the
optimization procedure also uses this additional point a(x, y):

y = c1x
3 + c2x

2 + c3x + c4 (4)

In other words, the best cubic polynomial of the form 4 is found
using the points set S1 = {m, k} or S2 = {m, a, n} .

Fig. 1. The LS optimization for 2 polynomials to be fitted between
[m,k] and [m,a,n] and the fitted lines on the Cupidon’s bow (white
lines).

This stage is completed by forming the Cupidon’s bow. Figure
1 illustrates these two optimization cases. In Figure 2, some lip
tracking results are presented illustrating the key points found on
the lip contour and the fitted parametric models under different
illumination conditions.

Fig. 2. Lip contour extraction by parametric model fitting. Char-
acteristic points are shown as dots and the hand-labeled ”assistant”
points are marked with circles.

2.2. Lip Motion Representation

The first scenario is the use of a uniform grid of size N × M
on the intensity lip image. The grid sizes used in our work are
given in Section 4. This grid definition allows us to analyze the
information content of both the lip area and the non-lip area inside
the rectangular mouth region. The motion vectors are computed
on this grid by a two-level hierarchical block-matching algorithm.
The l1-norm is used to match the blocks. The best matches with
l1 distance larger than a certain threshold are eliminated to avoid
erroneous motion vectors. The threshold is automatically adjusted
via a histogram analysis. Following the motion estimation, the x
and y components of the motion vectors are separately transformed
via 2D-DCT.

The extracted parametric lip contour is in fact a rough sketch
of the real lip and does not contain sufficiently detailed informa-
tion to characterize discriminative biometrics of different speakers.
Discriminative information can be provided by incorporating the
motion vectors computed along the parametric lip contour. Thus
in the second scenario, only the motion vectors estimated on the
pixels of the extracted lip contour are taken into account and the
rest is discarded. Since this time we do not have a 2D grid, the two
sequences of x and y motion components on the contour pixels are
separately transformed using 1D-DCT. The final lip feature vector
is formed by concatenating these DCT coefficients along with lip
shape parameters.

The lip shape is represented in the feature vector with 4 para-
meters: maximum horizontal distance, and the 3 vertical distances
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from the Cupidon’s bow points to the lower lip boundary. Figure
3 shows these lip shape parameters. These parameters are then
added to the feature vector in order to consider the effect of the lip
shape to the identification performance.

Fig. 3. The 4 lip shape parameters added to the lip-motion feature
vector.

There exist a number of subspace representation techniques
that can be used as a solution to the dimensionality problem of
recognition systems. We introduced a two-stage discriminative
feature selection technique in [7], where the Bayesian discrimi-
native feature selection stage takes into account the intra-class and
inter-class distribution of individual single-frame feature vectors
whereas the second stage, i.e. LDA-based discrimination reveals
the temporal correlations. The reader may refer to [7] for details.

3. SPEAKER IDENTIFICATION SYSTEM

Biometric speaker identification experiments are conducted using
the audio-visual database MVGL-AVD [9]. The database includes
50 subjects, where each subject utters ten repetitions of her/his
name as the secret phrase. A set of impostor data is also collected
with each subject in the population uttering five different names
from the population.

Before the lip-motion feature extraction, each face image frame
is aligned using a 2D parametric motion estimator. For every
two consecutive face images global head motion parameters are
calculated using hierarchical Gaussian image pyramids and 12-
parameter quadratic motion model [10]. Then the face images are
warped according to these calculated parameters. After this align-
ment, the motion vectors from the lip frames of size 128 × 80 are
extracted using hierarchical block-matching technique. The blocks
used in the estimation are of size 15 × 9 and 15% of the best
matches with the largest l1-norm are eliminated. The hierarchi-
cal block-matching allows a block of mid-point (xm, ym) to move
[ym−7, ym+7] vertically and [xm−3, xm+3] horizontally. When
working with the rectangular grid, the lip-motion vectors on x and
y directions are separately transformed into DCT domain and the
first C 2D-DCT coefficients of the zig-zag scan both on x and y
directions are combined to form a feature vector F of dimension
2 × C. In case of contour processing, after interpolating both of
the motion vectors on x and y directions to vectors of maximum al-
lowable length in the database the first Cmax 1D-DCT coefficients
of the motions vectors are combined with possible concatenation
of the lip shape parameters. This feature extraction procedure is
illustrated in Figure 4.

The temporal characterizations of the lip motion modality is
performed using Hidden Markov Models (HMM). Word-level con-
tinuous-density HMM structures are built for the speaker identifi-
cation task. Each speaker in the database is modeled using a sep-
arate HMM and is represented with the feature sequence that is
extracted over the lip stream while uttering the secret phrase. First
a world HMM model is trained over the whole training data of the

Fig. 4. Feature extraction methodology.

population. Then each HMM associated to a speaker is trained
over some repetitions of the lip motion streams of the correspond-
ing speaker. In the identification process, given a test feature set,
each HMM structure associated with speakers and the world class
produces a likelihood. The log-ratio of the speaker likelihoods and
the world class likelihood results in a stream of log-likelihood ra-
tios that are used in the speaker identification system.

4. EXPERIMENTAL RESULTS

The performance analysis of the open-set speaker identification [7]
system is done using the equal error rate (EER) figure. The EER
is calculated as the operating point where false accept rate (FAR)
equals false reject rate (FRR). False accept and false reject rates
are defined as,

FAR = 100 × number of false accepts

Na + Nr

FRR = 100 × number of false rejects

Na
(5)

where Na and Nr are the total number of trials for the true and
imposter clients in the testing, respectively.

Let DT represents the whole database for the true clients.
The DT database is partitioned into two sets namely {DTA and
DT̄A

}, where DTA and DT̄A
are mutually exclusive sets each

having five repetitions from each subject in the database. The sub-
sets DTA and DT̄A

are used for training and testing respectively.
As there are 50 subjects and five repetitions for each true and im-
poster client tests, the resulting total number of trials becomes as
Na = 250 and Nr = 250.

Figure 5 presents the equal error rate (EER) performance of
the rectangular grids 64 × 40, 32 × 20, and 16 × 10 at which
lip-motion features are computed at varying dimensions. The EER
performances of the grids of sizes 64 × 40, 32 × 20, 16 × 10 are
maximized at 8.4%, 8.4%, and 8.9% at dimensions 37, 43, and 37,
respectively. Thus, it is concluded that lower dimensions, the EER
performance of the grid of size 64 × 40 is slightly better than the
results of the other grids.

Figure 6 presents the EER performance of the features ex-
tracted from the lip contour with/without the lip shape information
at varying dimensions. The EER performances of the lip contour
without/with shape information are maximized at 11.2% and 8.4%
at dimensions 20 and 21, respectively. Therefore, it is clear that
the EER performance gain is 2.8% if the lip shape information (i.e.
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only 4 parameters L1 through L4) is added to the feature vector ex-
tracted from the lip contour. For the sake of completeness, another
experiment has been performed using feature vectors formed by
fusing 2D-DCT coefficients of the grid of size 64 × 40 and the 4-
parameter lip shape information. Figure 7 presents the EER perfor-
mance of the features extracted from the grid with/without the lip
shape information at varying dimensions. The EER performances
of the grid without/with shape information are maximized at 8.4%
and 7.6% at dimensions 37 and 41, respectively. Our conclusion
on the EER performance increase by fusing lip shape information
with other available vectors has been justified.
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Fig. 5. EER results for rectangular grids of size 64× 40, 32× 20,
and 16 × 10.
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Fig. 6. EER results for lip contour and lip shape information.
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Fig. 7. EER results for a 64 × 40 grid and lip shape information.

5. CONCLUSION

A quasi-automatic system to extract and analyze robust lip-motion
features is presented for the open-set speaker identification prob-
lem. It is concluded that the utilization of the grid points for mo-
tion vector computation is better than using only lip contour points.
This shows the importance of the skin region for identification
even if it introduces some erroneous vectors. Moreover, it is worth
noting that the additional shape information greatly improves the
EER performance and becomes indispensable for speaker identi-
fication problem. Therefore, if available, accurate and robust lip-
motion information is an asset to improve the performance of uni-
modal (i.e. speech-only) systems, which are mostly corrupted by
noise in real-life.

Further studies will primarily investigate the effect of discrim-
inative feature selection techniques proposed in [7] on the EER
performance, the performance of the overall speaker identification
system using one specific secret phrase (i.e. password) and fea-
tures fused with corresponding speech modality.
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