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ABSTRACT

Automatic segmentation of audio streams according to speaker
identities, environmental and channel conditions has become
an important preprocessing step for speech recognition, speaker
recognition, and audio data mining. In most previous approaches,
the automatic segmentation was evaluated in terms of the perfor-
mance of the final system like the word error rate for speech recog-
nition systems. In many applications like online audio indexing,
and information retrieval systems, the actual boundaries of the
segments are required. Therefore we present an approach based
on the cumulative sum (CuSum) algorithm for automatic segmen-
tation which minimizes the missing probability for a given false
alarm rate. In this paper, we compare the CuSum algorithm to the
Bayesian information criterion (BIC) algorithm, and a generaliza-
tion of the Kolmogorov-Smirnov’s test for automatic segmentation
of audio streams. We present a two-step variation of the three algo-
rithms which improves the performance significantly. We present
also a novel approach that combines hypothesized boundaries from
the three algorithms to achieve the final segmentation of the audio
stream. Our experiments on the 1998 Hub4 broadcast news show
that a variation of the CuSum algorithm significantly outperforms
the other two approaches and that combining the three approaches
using a voting scheme improves the performance slightly com-
pared to using the a two-step variation of the CuSum algorithm
alone.

1. INTRODUCTION

Many audio resources like broadcast news contain different kinds
of audio signals like speech, music, noise, and different environ-
mental and channel conditions. The performance of many appli-
cations based on these streams like speech recognition and audio
indexing degrades significantly due to the presence of the irrele-
vant portions of the audio stream. Therefore segmenting the data
to homogeneous portions according to type (speech, noise, music,
etc.), speaker identity, environmental conditions, and channel con-
ditions has become an important preprocessing step before using
them [1], [2], [3], [4], [5], [6].

The previous approaches for automatic segmentation of audio
data can be classified into two categories: informed and blind. In-
formed approaches include both decoder-based and model-based
algorithms. In decoder-based approaches, the input audio stream
is first decoded using speech and silence models [7]; then the
desired segments can be produced by using the silence locations
generated by the decoder. In model-based approaches, different
models are built to represent the different acoustic classes ex-
pected in the stream and the input audio stream can be classified

by maximum likelihood selection and then locations of change in
the acoustic class are identified as segmental boundaries [3]. In
both cases, models trained on the data representing all acoustic
classes of interest are used in the automatic segmentation. The
informed automatic segmentation is limited to applications where
enough amount of training data is available for building the acous-
tic models. It can not generalize to unseen acoustic conditions
in the training data. Also approaches based solely on speech and
silence models mainly detect silence locations that are not neces-
sarily corresponding to boundaries between different acoustic seg-
ments. In this paper, we will focus on blind automatic segmen-
tation techniques which do not suffer from these limitations and
therefore serve a wider range of applications.

Blind change detection avoids the requirements of the in-
formed approach by trying to build models of the observations in
a neighborhood of a candidate point under the two hypothesis of
change and no change and using a criterion based on the log like-
lihood ratio of these two models for automatic segmentation of the
acoustic data. Examples of this approach are [1], [2], [4], and
[5]. In [6], the combination of an informed approach and a blind
approach was considered. Most of the previous approaches had
the goal of providing an input to a speech recognition, or a speaker
adaptation system. Therefore they provided the evaluation of their
systems based on comparisons of the word error rates achieved by
using the automatic and the manual segmentation not the accuracy
of the generated boundaries using the automatic segmentation [4],
[3], [7]. Exceptions of this trend include [5] and when the main
focus is data indexing like in [6].

In many applications like on-line audio indexing and informa-
tion retrieval, the goal of the automatic segmentation algorithm is
to detect the changes in the input audio stream and to keep the
number of false alarms as low as possible. Unfortunately all of
the current techniques for automatic blind segmentation like us-
ing the Kullback-Liebler distance, the generalized likelihood ra-
tio distance [2], or the Bayesian information criterion [5] try to
optimize an objective function that is not directly related to mini-
mizing the missing probability for a given false alarm rate. If we
define the missing probability as the probability of not detecting
a change within a reasonable period of time of a valid change in
the stream, then minimizing the missing probability is equivalent
to minimizing the duration between the detected change and the
actual change, namely the detection time.

In this paper, we will use a variation of the CuSum algorithm
which minimizes the detection time for a given false alarm rate to
automatically segment an input audio stream [8]. We will show
that this variation significantly outperforms the Bayesian informa-
tion criterion algorithm, and a generalization of the non-parametric
Kolmogorov-Smirnov’s test, [9]. We will also present a two-step
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variation of the three algorithms which improves the performance
significantly. Finally, we will introduce two approaches for com-
bining the results of the three algorithms to achieve better and more
robust segmentation.

In the next section, the three criteria used for automatic seg-
mentation and the implementation of the corresponding algorithms
are given. In section 3, the algorithm used in combining the output
of the three systems to generate the final segmentation is presented.
The experiments performed to evaluate the different strategies are
described in section 4. Finally, Section 5 contains a discussion of
the results and future research.

2. PROBLEM FORMULATION

The goal of our work is to search for a proper segmentation of
a given audio signal such that each resulting segment is homo-
geneous and belongs to one of the different acoustic classes like
speech, noise, and music and to a single speaker and a single chan-
nel. In this section, we will describe the actual implementation of
the three algorithms and the assumptions made to make the estima-
tion of the segmentation points efficient. In the three algorithms,
each frame of data is represented by a feature vector of the cep-
strum coefficients. Given an observation sequence of length n, the
detection of a change is equivalent to accepting the hypothesis H1

of change for time r ≤ n when testing it against the hypothesis
H0 of no change (i.e. r ≥ n). The following algorithm is used to
detect the change points in the input audio stream using any of the
three criteria:

1. Initialize the first observation index f with zero and the last
l with n0.

2. Detect if there’s a change using one of the three algorithms
for the input sequence of observations.

3. If no change is detected set l = l + n0.
else set f = r and l = r + n, where r is the location of the
change detected.

4. If (l − f > 3n0) f = l − 3n0.

5. If not end of audio stream go to 2.

6. End.

In the following, we will give details that are specific to the
implementation of each algorithm.

2.1. Change Detection Using the CuSum Algorithm

Under the assumption that the sequence of the log likelihood ra-
tios, {li}n

i=1, is an i.i.d process, the CuSum algorithm is optimal
in the sense of minimizing detection time for a given false alarm
rate [10]. This assumption is valid for many interesting processes
like some random processes that are modeled by Markov chains or
some autoregressive processes [11]. In the CuSum algorithm, the
likelihood ratio of the conditional PDFs of the observations under
both the hypothesis H1 of change for time r ≤ n and the hy-
pothesis H0 is estimated, then the maximum of the sum of the log
likelihood ratio of a given sequence of observations is compared
to a threshold to determine whether a boundary exists between two
segments of the observation sequence. Given n observations, we
compare

cn = max
r

nX

k=r

lk, (1)

where lk is the log likelihood ratio of the observation k to a thresh-
old λ [8].

The CuSum algorithm assumes that the conditional PDFs of
the observations under both the hypothesis H1 of change for time
r ≤ n and the hypothesis H0 of no change (i.e. r ≥ n) are
known. In most automatic segmentation applications, this is not
true. Therefore, we train a two-Gaussian mixture using the n ob-
servations in the given sequence. We initialize the two Gaussian
components such that the mean of one of them corresponds to the
mean of few observations in the beginning of the sequence of ob-
servations and the mean of the other corresponds to the mean of
few observations in the end of the observations sequence. The au-
tomatic segmentation using the CuSum algorithm is then reduced
to a binary hypothesis testing problem. The two hypothesis of this
problem are

H0 : zr∗ , · · · , zn ∼ N(µ0, Σ0),

and
H1 : zr∗ , · · · , zn ∼ N(µ1, Σ1),

where r∗ = arg maxr

Pn

k=r
lk, lk is the log likelihood ratio

estimated using the two Gaussian components N(µ0, Σ0) and
N(µ1, Σ1).

2.2. Change Detection Using the BIC Algorithm

The Bayesian information criterion is based on the log likelihood
ratio of two models representing the two hypothesis of having two-
class or one-class observation sequence. It adds a penalty term
to account for the difference in the number of parameters of the
two models [12]. The parameters of both models are estimated
using the maximum likelihood criterion. Given n observations,
the Bayesian information criterion BIC approach compares

bn =

nX

k=1

lk −
1

2
(d1 − d2) log(nM), (2)

where d1 and d2 are the number of parameters of the two models,
and M is the dimension of the observation vector [5], [12].

We implemented the BIC algorithm using the same assump-
tions given in [5]. So the conditional PDF of the observations un-
der the hypothesis H1 of change consists of two Gaussian PDFs.
Both Gaussian PDFs are trained using maximum likelihood esti-
mation. One of them is trained using the observations before the
hypothesized boundary and the other is trained using observations
after it. The conditional PDF of the observations under the hy-
pothesis H0 of no change is modeled with a single Gaussian PDF
trained using maximum likelihood estimation from using all the
n observations. Detecting a change at time r using the BIC algo-
rithm is then reduced to a binary hypothesis testing problem. The
two hypothesis of this problem are

H0 : z1, · · · , zn ∼ N(µ0, Σ0),

and
H1 : z1, · · · , zr−1 ∼ N(µ1, Σ1);

zr, · · · , zn ∼ N(µ2, Σ2),

where N(µ0, Σ0) is the Gaussian model trained using all the n
observations and N(µ1, Σ1) is trained using the first r observa-
tions and N(µ2, Σ2) is trained using the last n − r observations.
Since the model of the conditional PDF under the hypothesis H1 of
change depends on the location of the change, reestimation of the
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model parameters is required for each new hypothesized boundary
within the sequence of observations of length n. This problem is
avoided in our CuSum algorithm implementation, as in this case
both models are independent of the location of the hypothesized
boundary.

2.3. Change Detection Using the Kolmogorov-Smirnov’s Test

The Kolmogorov-Smirnov’s test is a nonparametric test of change
in the input data [9]. It compares the maximum of the difference of
the empirical CDFs of the data before and after the hypothesized
change point to a threshold to determine whether this point is a
valid boundary point between two distinct classes. In other words,
to test the validity of a boundary at observation k, the test compares

Sn = sup
z

|Fk(z) − Gn−k(z)| , (3)

where

Fk(z) =
1

k

kX

j=1

Θ(z − zj), (4)

Gn−k(z) =
1

n − k

nX

j=k+1

Θ(z − zj), (5)

and Θ(.) is the unit step function, to a threshold α [8].
The Kolmogorov-Smirnov’s test was designed for one-

dimensional observations. To generalize for observation vectors
of dimension M , we assume that the elements of the observation
vector are statistically independent and replace the criterion of the
Kolmogorov-Smirnov’s test with the following one

Sn = sup
m

sup
s

|F m
k (zm

s ) − G
m
n−k(zm

s )| , (6)

where

F
m
k (zm

s ) =
1

k

kX

j=1

Θ(zm
s − z

m
j ), (7)

and

G
m
n−k(zm) =

1

n − k

nX

j=k+1

Θ(zm
s − z

m
j ), (8)

for m = 1, · · · , M , and the range of values of each dimension
is quantized to a fixed number of bins, {zm

s }S
s=1 to be used in

calculating the empirical CDFs.

3. AN ALGORITHM FOR COMBINING THE THREE
SYSTEMS

Since the three approaches for automatic segmentation of the audio
data described before use different criteria and different modeling
of the conditional PDFs of the observations under both hypothe-
sis of valid change or no change. It is reasonable to expect these
algorithms to employ complementary information for automatic
change detection and therefore combining the three approaches
can improve the overall performance and robustness of the auto-
matic change detection system. To combine the three approaches,

we use each of them separately to generate a set of potential change
points. Then the values of the three measures used in the three al-
gorithms for detection of the change are evaluated at every point
of the three sets. Then based on either a voting scheme or a like-
lihood ratio test of two models trained on the values of the three
measurements of manually segmented data near and far from a
valid change respectively, the set of valid change points are se-
lected from the collection of the three sets. The steps of the algo-
rithm are

1. Initialize the first observation index f with zero and the last
l with n0.

2. Detect if there’s a change using the three algorithms for the
input sequence of observations.

3. Generate a list of the candidate points from the union of the
output of the three algorithms.

4. Calculate the values of the measurements of the three algo-
rithms at every point of the candidate list.

5. Remove the invalid changes from the list using a voting
scheme or a likelihood ratio test.

6. If the candidate list is empty set l = l + n0.
else set f = r and l = r + n0, where r is the location of
the last change in the candidate list.

7. If (l − f > 3n0) set f = l − 3n0.

8. If not end of audio stream go to 2.

9. End.

4. EXPERIMENTS

We tested the three approaches of the CuSum algorithm, the BIC
algorithm, and the generalized Kolmogorov-Smirnov’s test on the
automatic segmentation of the broadcast news Hub4 1998 evalua-
tion data. The data is sampled at 16 KHZ and windowed to frames
of 20 ms duration with overlap of 10 ms. Nineteen cepstrum co-
efficients are calculated for each frame. We selected the initial
number of observations to be tested for a change, n0, to be 300
frames for the CuSum and the BIC algorithms and 400 frames for
the generalized Kolmogorov-Smirnov’s test. For the generalized
Kolmogorov-Smirnov’s test, we divided the range of the values of
each dimension of the observation vector to five bins and the two
empirical CDF’s are compared in each of these five bins to find
the maximum. The size of the testing data is 5.5 hours which con-
tained approximately 625 homogeneous segments. For the three
algorithms, we tried adding a verification step in which the objec-
tive criterion is calculated at the candidate change points using the
knowledge obtained in the first step of the previous and the next
change point and then compared to a new threshold. The thresh-
olds in our experiments are chosen empirically to minimize, on
2-hours held-out data, the objective function

O = MP + 0.1 ∗ FA, (9)

where MP is the missing probability and FA is the false alarm
probability, and under the constraint that the false alarm probabil-
ity is less than 0.1. The missing probability is calculated by as-
suming a change is missed, if no change was detected within one
second from it. Table 1 shows the results for one-step automatic
segmentation using the three algorithms. It shows that our imple-
mentation of the CuSum algorithm significantly outperforms the
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Algorithm Missing Prob. FA Prob.
Kolmogorov-Smirnov 37.6 8.6
BIC 35.9 9.4
CuSum 27.9 8.9

Table 1. One-Step Automatic Segmentation

Algorithm Missing Prob. FA Prob.
Kolmogorov-Smirnov 35.9 8.3
BIC 32.6 9.1
CuSum 16.8 4.9

Table 2. Automatic Segmentation with a Verification Step

BIC and generalized Kolmogorov-Smirnov’s tests. The BIC al-
gorithm works better than the generalized Kolmogorov-Smirnov’s
test, although the latter tends to give lower false alarm probability.
Table 2 shows that adding a verification step after the initial seg-
mentation improves significantly the performance of both the BIC
and the CuSum algorithms.

We tested also the combination algorithm described in the pre-
vious section. Table 3 shows that the combination based on the
voting scheme significantly outperforms that based on the likeli-
hood ratio test using models trained using manually segmented
data. It shows also that this voting scheme slightly outperforms
the best single automatic segmentation system which uses our im-
plementation of the CuSum algorithm with a verification step.

5. RESULTS AND DISCUSSION

In this paper, we examined three approaches for blind automatic
segmentation of audio streams. Our implementation of two of
these approaches, namely the CuSum algorithm and the gener-
alized Kolmogorov-Smirnov test, is novel and for the first time
applied to automatic segmentation of audio streams. We also
presented a two-step variation of the algorithms which improved
the perfomnace significantly. Finally, we presented also two ap-
proaches for combining the scores from the three systems to
achieve better performance and more robust segmentation of the
audio stream.

The results for our tests show that our implementation of the
CuSum algorithm significantly outperforms other blind automatic
segmentation techniques of audio data like the BIC algorithm and
the generalized Kolmogorov-Smirnov approach. It has the advan-
tage also of not having to reestimate the conditional models at each
potential segmentation point within the same window. The better
performance can be attributed partially to the fact that the CuSum
algorithm tries to minimize the detection time for a given false
alarm rate. This objective is more suited to automatic segmenta-

Algorithm Missing Prob. FA Prob.
CuSum 16.8 4.9
Voting Combination 15.6 7.3
Likelihood Ratio Combination 16.7 6.9

Table 3. Automatic Segmentation using Systems Combination

tion applications than the objectives of both the BIC and the gen-
eralized Kolmogorov-Smirnov approaches.

Combining the scores of the three systems using voting
schemes is significantly better than the likelihood ratio approach
using models trained near the change points and others far from
the change points. Combination using voting is slightly better than
using the CuSum algorithm alone with a verification step but at the
expense of increasing the processing time of the data.

Further investigation of the effect of the type of the input fea-
tures and the models for the conditional PDFs on the automatic
segmentation performance will be our main goal in future research.
We will consider also many other alternatives for combining the
scores of the three algorithms.
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