<

Semantic Data Mining of Short Utterances

Lee Begeja], Harris Drucker’, David Gibbon', Patrick Haﬁ”nerl, Zhu Liu', Bernard Renger', Behzad Shahraray]

'AT&T Labs Research, IP & Voice Services Lab, NJ, USA
*Monmouth University, West Long Branch, NJ, USA

Abstract— This paper introduces a methodology for speech
data mining along with the tools that the methodology requires.
We show how they increase the productivity of the analyst who
seeks relationships among the contents of multiple utterances and
ultimately must link some newly discovered context into testable
hypotheses about new information.

While in its simplest form one can extend text data mining to
speech data mining by using text tools on the output of a speech
recognizer, we have found that it is not optimal. We show how
data mining techniques that are typically applied to text should be
modified to enable an analyst to do effective semantic data mining
on a large collection of short speech utterances.

Index Terms—classifiers, clustering, data reduction, relevance
feedback, speech data mining

I. INTRODUCTION

Our work on semantic data mining of short utterances relates
to the design of a taxonomy that covers the initial set of
utterances, with a specific set of utterance types. This
taxonomy relates to a specific business problem of interest to
the analyst, who is a subject matter expert in this specific
business area. An effective taxonomy will be a set of utterance
types such that this set of types covers the preponderance of
the utterances in the utterance set. As an example, the
utterance, “I wanna order a calling card for my business line,”
would be mapped to the utterance type,
Request(Order_CallingCard). Utterances may have multiple
types. The set of utterance types forms the taxonomy of
interest and each utterance type is a testable hypothesis when
expressed as an NLU classifier.

The overall goal is to develop an effective dialogue response
system for use in large scale telephony applications We begin
by collecting thousands of utterances in order to effectively
cover the space. Initial data collection is done through a
“wizard” system that collects the set of utterances in the
context of the specific business problem [1]. Once collected,
the analyst classifies the utterances and develops a labeling
guide that documents the taxonomy. This taxonomy forms the
basis for a set of Natural Language Understanding classifiers,
which have a one-to-one relationship with the set of utterance
types. At this point a separate group of people, called labelers,
use the labeling guide as the basis to classify a larger set of
utterances. Once the utterances are classified they serve as
input to build the NLU classifiers. The ultimate goal would be
an effective set of NLU classifiers that could be used with a
dialogue manager that will understand and properly reply to
people calling in to a telephone voice response unit [2].

0-7803-8874-7/05/$20.00 ©2005 IEEE

I-493

We test the NLU classifiers in the field to determine their
effectiveness in combination with the dialogue manager. In
many instances this combination may not completely satisfy
the business problem. This initiates an interactive process that
often requires an adjustment to the taxonomy.
In this paper will we show how and why we adapted the
following techniques to work on short utterances:

e Data Reduction

e (lustering

e Relevance Feedback
In addition we produce an NLU metric that gives a measure of
accuracy for the coverage of the taxonomy. Using this metric
an analyst can refine the taxonomy before it goes to the
labelers and especially before it goes to the field.

II. DATA REDUCTION

After data collection, the utterances or documents are mapped
into a feature vector space for subsequent processing. For
many speech data collections, utterance redundancy (and even
repetition) is inherent in the collection process and this is
tedious for analysts to deal with as they examine and work
with the dataset. Natural language processing techniques
including text normalization, named entity extraction, and
feature computation are used to coalesce similar documents.

A. Text Normalization

In data reduction, we must carefully define what is meant when
we say that utterances are “similar”. There is no doubt that the
user interface does not need to display exact text duplicates. At
the next level, utterances may differ only by transcription
variants like “100” vs. “one hundred” or of transcription
markup such as: ‘“uh, eh, background noise.”.” Text
normalization is used to remove this variation.

Text normalization is handled by string replacement mappings
using regular expressions. Note that these may be represented
as context free grammars and composed with named entity
extraction (see below) to perform both operations in a single
step. In addition to one-to-one replacements, the
normalization includes many-to-one mappings (you < y’all,
ya’ll) and many-to-null mappings (to remove noise words).

B. Named Entity Extraction

Utterances that differ only by an entity value should also be
collapsed. For example “give me extension 12345 and “give
me extension 543217 should be represented by “give me
extension extension_value.” Named entity extraction is
implemented through rules encoded using context free
grammars in Backus-Naur form.

ICASSP 2005

C. Feature Extraction

To perform processing such as clustering, relevance feedback,
or building prototype classifiers, the utterances are represented
by feature vectors. At the simplest level, individual words can
be used as features. In this case, a lexis or vocabulary for the
corpus of utterances is formed and each word is assigned an
integer index. Each utterance is then converted to a vector of
indices and the subsequent processing operates on these
feature vectors. When the dataset available for training is very
small (as is the case for relevance feedback) it is best to use
less restrictive features to effectively amplify the training data.
In this case, we have chosen to use features that are invariant
to word position, word count and word morphology and we
ignore noise words. With this, the following two utterances
have identical feature vector representations:

e Ineed to check medical claim status

e I need check status of a medical claim

D. Data Reduction Results

The effectiveness of the redundancy removal is largely
determined by the nature of the data. As shown in Table I, we
have found typical redundancy rates for collections of
customer care data of from 30 to 40%. In some cases, where
the task is less complex, we have observed data redundancy
greater than 50%. Note that as the average length of the
documents increases, the redundancy decreases.

Industry Financial Health Insurance Retail

Sector Care

Original 11,623 12.080 12,109 10,240

Utterances

Unique 10,021 10,255 8,865 4956

Utterances

Unique

Utterances 9,670 9,452 8,103 4,392

after Text

Normalization

Unique

Utterances

after Entity 9,165 9,352 7903 8

Extraction

Unique

Utterances 7,929 7,946 6,530 3,566

after Feature

Extraction

Redundancy 31.8% 34.2% 46.1% 65.2%
Table 1

III. CLUSTERING

While removing redundant data greatly eases the burden on the
analyst, we can go a step further by organizing the data into
clusters of similar utterances. Unfortunately, available distance
metrics for utterance similarity are feature-based and result in
lexical clusters rather than clusters of semantically similar
utterances. So the goal of this stage of the processing is to add
further structure to the collected utterance set so that an analyst
can more easily make informed judgments to define the
utterance types.

Clustering short utterances is problematic due to the paucity of
available lexical features. It is quite common for two
utterances to have no common features.

A. Clustering Algorithm

Clustering causes data to be grouped based on intrinsic
similarities. In any clustering algorithm, we need to define the
similarity (or dissimilarity, which is also called distance)
between two samples, and the similarity between two clusters
of samples. Specifically, the data samples in our task are short
utterances of words. Each utterance is converted into a feature
vector, which is an array of terms (words) and their weights.
The distance between two utterances is defined as the cosine
distance between corresponding feature vectors. Assume x and
y are two feature vectors, the distance d(x, y) between them is
given by

[}

d (X, y) =1- u

[l-[1v]
For all the results presented in this paper, we applied named
entity extraction, stop word removal, word stemming, and 1-
gram term with binary weights to each utterance to generate
the set of feature vectors.
The distance between two clusters is defined as the maximum
utterance distance between all pairs of utterances, one from
each cluster. Figure 1 illustrates the definition of the cluster
distance.

Cluster distance

Cluster 1

o
Cluster 2

O Call utterance
Fig. 1. Tustration of Cluster Distance.

B. Merging Clusters

Clustering may produce a large number of clusters since the
utterances are short. To reduce the total number of clusters, we
merge all clusters smaller than an established minimum into a
special “other” cluster. While there is no set rule for the
minimum size of clusters, we find that a minimum of 3 to 5 are
reasonable choices in our study.

C. Clustering Performance Evaluation

We use the purity concept explained in [3] to evaluate
clustering performance. The two measurements are the average
cluster purity (ACP) and the average utterance type purity
(ATP), as explained below. First, we define:

n;: Total number of utterances in cluster i with utterance type j
N,: Total number of utterance types

N.: Total number of clusters

N: Total number of utterances

n;: Total number of utterances with utterance type j

n,: Total number of utterances in cluster i

1-494

The purity of a cluster p, can then be defined as:

Ny
_ 2, 2
pi.= Znij I'n;
=

And the average cluster purity (ACP) is:
1 ¥4
ACP = _Z pi-n
N3

Similarly, the utterance type purity p; and the average
utterance type purity (ATP) are calculated as:

N

= an In’

Py =L
i=1

1 &
ATP=—) p.'n,;
N; -J -J

The ATP measures how well the utterances of one utterance
type are limited to only one cluster, and the ACP measures
how well the utterances in one cluster are within the same
utterance type. Two extreme cases are 1) if all utterances are in
one cluster, then ATP=100%, and ACP is small; 2) if each
utterance is in a separate cluster, then ACP = 100%, and ATP
is small. Ideally, we prefer a high ACP and a high ATP for
each cluster. When this is not the case (given that the
clustering algorithm is used for bootstrapping the utterance
types), we prefer a high ACP with reasonable ATP over a high
ATP with low ACP(see Table III). In this mode, the analyst
does not need to spend too much effort on checking the
consistency of each cluster, but rather study the difference and
similarity among clusters.

D. Clustering Results

We evaluated the clustering performance on four applications.
To generate Table III, we set the clustering distance threshold
to 0.6, and the minimum cluster size to 5.

TABLE IIT
CLUSTERING PERFORMANCE RESULTS BY APPLICATION
Data N, N, ATP (%) ACP(%)
Financial 36 335 23.2 71.2
Health care 92 133 45.6 61.3
Insurance 51 279 25.4 60.2
Retail 31 131 35.8 70.2

IV. RELEVANCE FEEDBACK

Although clustering provides a good starting point, finding all
representative utterances belonging to one utterance type is not
a trivial task. Additional data mining tools are desirable to help
the analyst. Our solution is to provide a classification
mechanism based on Support Vector Machine (SVM)
classifiers for the analyst to perform this tedious task. In such
classification based approaches, the user sequentially assigns
labels to examples until the examples belonging to the target
utterance type are reasonably separated from the rest. We
adopted SVMs as the classifier for two reasons. First, SVMs
efficiently handle high dimensional data (in our case, a set of
utterances with a large vocabulary). Second, SVMs provide
reliable performance with a small amount of training data.
Both advantages perfectly match the task at hand. For more
details about SVMs, please refer to [4][5].

The most commonly used approach in Information Retrieval
(IR) is relevance feedback. In essence, an analyst indicates to
the retrieval system that it should retrieve “more documents
like the ones desired.” Selecting relevant documents based on
analyst’s inputs is basically a classification problem.
Relevance feedback is an iterative procedure. The analyst
starts with a cluster or a query result by certain keywords, and
marks each utterance as either a positive or negative utterance
for the utterance type. The analyst’s inputs are collected by the
relevance feedback engine and they are used to build a SVM
classifier that attempts to capture the essence of the utterance
type. The SVM classifier is then applied to the rest of the
utterances in the dataset and it assigns a relevance score for
each utterance. A new set of the most relevant utterances are
generated and presented to the analyst, and the second loop of
relevance feedback begins.

For efficient labeling of large quantities of data, another
iterative approach, generally referred to as active learning, is
preferred. The most relevant utterances, while interesting from
an IR standpoint, are usually obvious for the classifier: they
are not those which maximize progress when learning them. It
is rather the labeling of uncertain utterances, which lie at the
decision boundary, which gives the greatest improvement to
the discrimination between relevant and irrelevant utterances.
To establish which utterances lay at the decision boundary,
one can rely on either geometric or probabilistic criteria.
According to the geometric criterion, the examples which
should be labeled in priority stand at the center of the
classifier. For an example X, let g(x) be the output of the
SVM before the addition of any bias. The geometric criterion
relies on the transformation

g(x)+b
such that for positive support vectors
gx)+b=1
and for negative support vectors
gx)+b=-1
The center of the margin corresponds to
gx)+b=0

In our problem we define the positive class as examples
belonging to the utterance type and the negative class as all
other examples. As a consequence the positive class has many
fewer representatives than the negative class. Therefore,
choosing examples at the center of the margin will typically
return a large majority of negative utterances, and result in a
labeling process which is both suboptimal and frustrating.

The probabilistic criterion relies on the fact that the classifier
output approximates in a reasonable way the posterior
probability that a given utterance belongs to the utterance type
and selects examples where the posterior probability is the
closest to 0.5. In the case of SVMs, such a probabilistic
approximation can be obtained with the application of
univariate logistic regression to the output of the SVM [14].
The transformation consists in

g'(x)=0o(ag(x)+b)

where O is the sigmoid function. @ and b are optimized to
minimize the Kullback Liebler divergence between g'(x)
and the posterior probability of the class P(c | x) given x.

I-495

Separate training sets should be used to train the SVM
classifier and the logistic parameters @ and b . We use cross-
validation to maximize the use of labeled examples. Note that
in the case of active learning, our logistic remapping function
is trained on the already labeled examples, whose distribution
is skewed and not statistically representative of the true
distribution. Despite this limitation, we found the logistic
remapping approximation worked well on unlabeled examples,
returning comparable numbers of positive and negative
examples, and converging significantly faster than the
geometric criterion.

Both theory and computer simulations predict that active
learning using the probabilistic criterion minimize the number
of examples one has to label to achieve a given classification
accuracy on test data. Our simulations suggest that, if the goal
is to label enough examples to build a classifier that generalize
well on test data, the active learning strategy can reduce by up
to a factor of six the number of examples that need to be
labeled.

V. NLU METRIC

The analyst can improve utterance types by iteratively building
and testing interim NLU classifiers. A Web interface was
added to allow the analyst to build and test NLU classifiers
and to better understand patterns in the NLU classifier test
results. We used BoosTexter as the underlying boosting
algorithm for classification [7][8].

After the analyst has labeled the utterances (we will refer to
these as truth utterance type labels), approximately 20% of the
labeled utterances are set aside for testing. The remaining data
are used to build the initial NLU classifier. For each of the
tested utterances in the test data, logs show the classification
confidence scores for each utterance type. Confidence scores
are replaced by probabilities that have been computed using a
logistic function. These probabilities are then used to
calculate the NLU metric which attempts to reveal patterns in
the classification results. The NLU metric, roughly speaking,
is a measure of utterance type differentiability. The NLU
metric is calculated as follows and is averaged over the
utterances that belong to only one utterance type:

1 ¢
S N ;(T’ XD forTi=H; (correctly classified)

1 ¢
ﬁ;(T —H) forT; # H;(incorrectly classified)

where § is the NLU Metric, N is the number of utterances that
belong to only one utterance type, T is the truth probability,
Xi is the next highest probability, and Hi is the highest
probability. A test utterance is correctly classified if the
calculated probability of the truth type is the highest
probability.

As can be seen in Table IV, the NLU metric for the
Request(Order_CC) utterance type is 0.681. Of the 18 test
utterances, only two were incorrectly classified. Thus,
although some of the test utterances in the test log indicate
problems, on the aggregate the NLU metric for this utterance
type is quite good. Other good utterance types are shown in
Table V. If the NLU metric was less than 0.50 or negative,

this would indicate a problem with the utterance type. The best
approach for the analyst is to evaluate both the test log
probabilities (for utterance level problems) and the NLU
metric (for aggregate level problems) for every utterance type.

tterance type # of Tests NLU
(# correct) Metric

|Report(LostStolen_CC) 31 (30 correct) 0.941
|Request(Call_Transfer_CSR) 28 (27 correct) 0.850
|Request(0rder_CC) 18 (16 correct) 0.681

Table IV. NLU Metric
This metric allows the analyst to identify utterance types that

might have problems in the field. Once identified, the analyst

could redefine the problematic utterance types. Another
interim NLU classifier could then be built and tested to
determine if the changes improved the utterance type. The
analyst can iteratively build and test the interim NLU
classifiers. Once the utterance types are correct the final
annotation guide is created. The final annotation guide would
then be used by the labelers to label all the utterance data
needed to build the final NLU classifier. The NLU metric

helps create better utterance types, which ultimately leads to a

better NLU classifier.

VI. SUMMARY

We have shown adaptations of text based data mining tools to

make them more useful in the context of speech data mining.

These tools enable our analysts to develop NLU classifiers in

the context of a specific business problem

REFERENCES

[1] A. L. Gorin, G. Riccardi, and J. H. Wright, “How May I
Help You?,” Speech Communication, 1997, 23:113-127

[2] A. Abella and A. Gorin, “Construct algebra: Analytical
dialog management,” in Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL),
1999, Washington, D.C., June.

[3] J. Ajmera, H. Bourlard, I. Lapidot and I. McCowan,
"Unknown-Multiple Speaker clustering using HMM",
ICSLP, Denver, Colorado, 2002, 573-576.

[4] H. Drucker, D. Gibbon, B. Shahraray, “Relevance
feedback using support vector machines,” in Proceedings of
the 2001 International Conference on Machine Learning.

[5] V. N. Vapnick, Statistical Learning Theory. John Wiley
and Sons Inc.,1998.

[6] C. Platt, “Probabilistic Outputs for Support Vector
Machines and Comparisons to Regularized Likelihood
Methods”, in Advances in Large Margin Classifiers, A.
Smola, P. Bartlett, B. Scholkopf, D. Schuurmans, eds., pp.
61-74, MIT Press, (1999).

[7] M. Rochery, R. Schapire, M. Rahim, N. Gupta, G.
Riccardi, S. Bangalore, H. Alshawi and S. Douglas,
“Combining prior knowledge and boosting for call
classification in spoken language dialogue,” ICASSP 2002.

[8] R. Schapire, Y. Singer, 2000. BoosTexter: A Boosting-
based System for Text Categorization, Machine Learning,
39(2/3):135-168.

I-496

