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ABSTRACT
Recent progress in large vocabulary continuous speech recog-

nition (LVCSR) has raised the possibility of applying infor-

mation retrieval techniques to the resulting text. This paper

presents a novel unsupervised text segmentation method.

Assuming a generative model of a text stream as a left-to-

right hidden Markov model (HMM), text segmentation can

be formulated as model parameter estimation and model se-

lection using the text stream. The formulation is derived

based on the variational Bayes framework, which is expected

to work well with highly sparse data such as text. The ef-

fectiveness of the proposed method is demonstrated through

series of experiments, where broadcast news programs are

automatically transcribed and segmented into separate news

stories.

1. INTRODUCTION

Recent progress in large vocabulary continuous speech recog-

nition (LVCSR) has raised the possibility of applying infor-

mation retrieval techniques to the resulting text. Text seg-

mentation is one of such techniques. The goal of a text

segmenter is to segment a text stream into some semanti-

cally cohesive units, namely, stories. If there are large-scale

audio-video archives such as a large number of broadcast

news programs, and if an LVCSR system is available, the

text segmenter can achieve audio-video segmentation [1],

which is useful meta data in information retrieval.

Most conventional methods for text segmentation are

based on the “change point detection” (CPD) approach, a

typical implementation of which is Hearst’s TextTile [2].

TextTile regards a text stream as a word sequence, and sets

a constant-width sliding window along the sequence. The

sliding window has its own word frequency vector at each

location, and computes the similarity between adjacent win-

dows (usually defined as the cosine between word frequency

vectors). Thus, story boundaries, namely the points when

topics change, can be detected by observing local minimum

points on the similarity measure.

The CPD approach contains some parameters, and their

values must be appropriately tuned by skilled engineers in

order to achieve good performance. For example, the width

of the sliding window depends on the story lengths, so that

the width is usually decided by assuming some distribution

of story lengths. In many cases, such an assumption de-

creases the flexibility of a system. That is to say, the system

may return unexpected output when input data is outside the

assumption.

In this paper, we propose a parameter-free text segmen-

tation method, which assumes a left-to-right hidden Markov

model (HMM) as a generative model of a text stream. Each

state of the HMM is associated with a topic, and generates

a story related to the topic. Then, text segmentation can

be treated as a process of fitting HMMs to the input text

stream. In other words, text segmentation can be formulated

as HMM learning using the input text stream. Furthermore,

we introduce Bayes estimation, namely, variational Bayes

[3], into HMM learning. We experimentally show the effec-

tiveness of the proposed method, which is expected to have

high robustness against sparse data such as text streams.

Note that there is an existing HMM-based text segmen-

tation method by Yamron et al [1]. They employed an er-

godic HMM fully trained with prepared large-scale corpora.

That is, they treated segmentation as decoding of the input

text stream using the HMM. In contrast, our approach is

unsupervised. We employ a left-to-right HMM, which is

initialized and trained with each input text stream only.

2. TEXT SEGMENTATION BY MODEL FITTING

2.1. Basic Concept

We assume that a text stream of N topics is generated from

a discrete HMM of N -state left-to-right architecture (Figure

1). The HMM starts at the initial state I = 0, and repeats

state transitions according to the transition probabilities ai

(i = 1, · · · , N ) until it reaches the final state F = N +1. At

each state transition, the HMM outputs a word according to

the discrete output probability bij (j = 1, · · · , L) associated

with state i. Once the HMM reaches the final state, you

have observed a word sequence o1, · · · , oT with N topics

and lexicon size L.

I - 4850-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



Text segmentation can be interpreted as an inverse oper-

ation to the text generation described above. A given word

sequence O = (o1, · · · , oT ) can be segmented into N sub-

sequences of words by fitting an N -state HMM to the text

stream. This fitting operation is formulated as model pa-

rameter estimation from the observation O.

I=0 1 2 3 F=4

1 a1 a2 a3

1-a 1 1-a 2 1-a 3

b1,j b2,j b3,j

o1 o2 ot oT,, , , ,......

Fig. 1. A generative model of a text stream containing three

stories. Each state parameterizes a topic as bij .

2.2. Maximum Likelihood Segmentation

Let us consider ML estimation of an HMM parameterized

by θ = {ai, bij | i = 1, · · · , N, j = 1, · · · , L} using word

sequence O = (o1, · · · , oT ). This can be easily realized

by applying the expectation maximization (EM) algorithm,

namely, the Baum-Welch parameter reestimation formulae.

As is well known, the Baum-Welch uses auxiliary variables

known by the name of forward and backward variables αt (i)
and βt (i) respectively. They are defined as follows:{

αt (i) = P (zt,i = 1, o1, · · · , ot | θ)
βt (i) = P (ot+1, · · · , oT | zt,i = 1, θ)

, (1)

where zt,i is a binary latent variable that takes 1 if the HMM

stays at state i after the tth state transition (if the tth word

observation ot has come out from state i), otherwise it takes

0. According to Eqs.(1), you obtain the following probabil-

ity that the word ot has come from state i:

P (zt,i = 1 | O, θ) =
αt (i)βt (i)

N∑
j=1

αt (j)βt (j)

. (2)

Eq.(2) designates a soft clustering of words o1, · · · , oT into

N clusters, and each cluster is actually a connected seg-

ment. Making an N -state left-to-right HMM learn text stream

O is equivalent to finding a sequence of N homogeneous

segments in O, where “homogeneous” means constancy of

word frequency. Therefore, once the learning process has

fully converged, each segment obtained by computing Eq.(2)

is expected to be a semantically cohesive segment contain-

ing one topic in itself.

2.3. Bayesian Segmentation

It is also possible to apply Bayes estimation to our text seg-

mentation method. The objective of Bayes estimation is to

obtain parameter distribution p (θ | O). In contrast, ML es-

timation is a kind of point estimation. The distribution con-

tains information about whether the amount of training data

O is sufficient or not. Hence the Bayes estimation is ex-

pected to work well with sparse data such as a text stream.

Although Bayes estimation is supposed to be computa-

tionally difficult for stochastic models with latent variables,

an effective algorithm called variational Bayes (VB) has

been available in recent years [3]. We introduce the VB

algorithm into our segmentation task. Here, we present the

final result of the VB formulation for HMMs.

1. Assume the following prior distribution with respect

to θ = {ai, bij}:

p (θ) =

N∏
i=1

B (ai | κ1,i, κ0,i)

×

N∏
i=1

D (bi,1, · · · , bi,L | λi,1, · · · , λi,L) ,

where B (x | a, b) ∝ xa−1 (1 − x)
b−1

and

D (x1, · · · , xn | φ1, · · · , φn) ∝ xφ1−1
1 · · ·xφn−1

n de-

note the beta and Dirichlet distribution respectively.

Here, κ0,i, κ1,i, λij are called hyper-parameters, which

control parameter distribution. Now we employ nota-

tion κ0,i, κ1,i, λij for hyper parameters for the prior,

and κ
(l)
0,i, κ

(l)
1,i, λ

(l)
ij for the posterior, where l denotes

the number of VB iterations.

2. Calculate (Bayesian) forward and backward variables

using the following recurrence formulae:

α1 (i) = exp (Bi,o1
) δi,1, βT (i) = exp (A1,N ) δi,N ,

αt+1 (i) = αt (i − 1) exp
(
A1,i−1 + Bi,ot+1

)
+ αt (i) exp

(
A0,i + Bi,ot+1

)
,

βt−1 (i) = βt (i) exp (A0,i + Bi,ot
)

+ βt (i + 1) exp (A1,i + Bi+1,ot
) ,

where

Aj,i = Ψ
(
κ

(l)
j,i

)
− Ψ

(
κ

(l)
0,i + κ

(l)
1,i

)
(j = 0, 1) ,

Bik = Ψ
(
λ

(l)
ik

)
− Ψ

⎛
⎝ M∑

j=1

λ
(l)
ij

⎞
⎠ ,

and αt,0 = βt,N+1 = 0 (t = 1, · · · , T ). Here,

δij denotes Kronecker’s delta, and Ψ (x) denotes the

digamma function defined as Ψ (x) = Γ′ (x) /Γ (x) =
(log Γ (x))

′

.
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3. Calculate the expectations of the latent variables zt,i

as follows:

zt,i =
αt (i)βt (i)

N∑
j=1

αt (j)βt (j)

, (3)

zt,izt+1,i =
αt (i) exp

(
A0,i + Bi,ot+1

)
βt+1 (i)

N∑
j=1

αt (j)βt (j)

,

zt,izt+1,i+1 =
αt (i) exp

(
A1,i + Bi+1,ot+1

)
βt+1 (i + 1)

N∑
j=1

αt (j)βt (j)

4. Update the hyper-parameters as follows:

κ
(l+1)
0,i = κ0,i +

T−1∑
t=1

zt,izt+1,i,

κ
(l+1)
1,i = κ1,i +

T−1∑
t=1

zt,izt+1,i+1 + δN,i,

λ
(l+1)
ik = λik +

T∑
t=1

δk,ot
zt,i.

5. Go back to Step 2 until convergence.

Once the estimation process above has converged, the seg-

mentation result can be obtained in the same way as shown

in the previous subsection using Eq.(2), which corresponds

to Eq.(3) in Bayesian segmentation. Note that the left hand

side of Eq.(3) is an expectation of that of Eq.(2) with respect

to θ, that is to say, zt,i =
∫

P (zt,i = 1 | O, θ) p (θ | O) dθ.

2.4. Number of Topics and Model Selection

Because it is generally unknown how many topics (seg-

ments) are contained in a text stream, any text segmenter

must provide a means of determining the number of topics.

In the proposed method, the number of topics corresponds

to the number N of states in the HMM, so that model se-

lection methods are applicable to our problem. You can

determine the number of topics by preparing multiple hy-

potheses on N such as Nmin ≤ N ≤ Nmax, performing

HMM learning for each hypothesis and choosing the best

hypothesis based on a particular model selection criterion.

Several criteria for model selection exist. In ML estima-

tion, you can choose Akaike’s information criterion (AIC)

or Rissanen’s minimum description length (MDL) criterion

as the model selection criterion. In Bayes estimation, the

VB framework includes a model selection criterion, namely,

a model posterior distribution p (N | O) ∝ p (O | N) p (N),
which allows you to choose the most likely number of topics

in the sense of maximum a posteriori probability (MAP).

3. EXPERIMENTS

Now we experimentally show the effectiveness of our text

segmentation method. First, we chose a 15-minute Japanese

TV broadcast news program, and randomly collected five

different broadcasts (75 minutes) of this program. They

consisted of 66 short news stories in total.

Then we transcribed them to prepare two sets of text

data, one of which was manually transcribed, and the other

automatically transcribed by our LVCSR system. We pre-

liminarily calculated the word error rate (WER) of the LVCSR

system for each broadcast and found that WER ranged from

11.6 to 19.5% and that the overall average was 15.5%. We

also investigated the manually transcribed text data set, and

found that the lengths of the news stories ranged from 16 to

699 words and averaged 180 words.

We defined a set of stopwords that included pronouns,

conjunctions, auxiliary verbs, interjections, postpositional

particles and so forth. Any words included in the set were

removed from the text data sets before segmentation. After

this preprocessing, the average story length decreased to 91

words, approximately half of the original length.

In our experiments, the goal of text segmentation was to

segment a sequence of news stories into each separate story.

We used a co-occurrence agreement probability [4] (CoAP)

to measure segmentation accuracy. CoAP is a highly flex-

ible measure, and a simplified version is widely used. We

also adopted the simplified version, which is defined as the

rate of correctly labeled word pairs within all pairs that are a

fixed distance (k words) apart, where k is chosen to be half

the average reference story length.

First, we performed a segmentation experiment on the

assumption that the true number N of topics was known,

where we segmented an N -topic text stream using an N -

state HMM and not using any other HMMs. For test data,

we extracted all possible sub-sequences of N stories (top-

ics) from the text data set, where 5 ≤ N ≤ 10.

Figure 2 plots the average segmentation accuracies by

ML and Bayes segmentation to manually and automatically

transcribed text streams for each N . This result shows that

Bayes segmentation performs much better than ML seg-

mentation. ML estimation potentially assumes the infinite

data amount and is therefore too sensitive to words that oc-

cur with low frequency, while Bayes estimation is able to

take into account data insufficiency, which text streams or-

dinarily imply. That is why we rate the Bayes segmentation

performance higher.

On the other hand, there seems to be a trend for accu-

racy to decrease slightly as the number of topics increases

in both EM and Bayes segmentation. We assume this is

caused by a local maximum problem in training HMMs.

Actually, we inspected text data with low segmentation ac-

curacy, and found that accuracy sometimes depends on the
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initial training condition. Hence there is a possibility that

we can achieve further improvement by replacing the ini-

tialization process with something other than a simple “flat

start”.

Comparing manual and automatic (LVCSR) transcrip-

tion, the accuracy of the latter is lower than that of the for-

mer. This is quite reasonable because LVCSR transcription

contains a 15% recognition error rate on average. However,

this level of accuracy is not that bad when compared to con-

ventional methods, as will be shown later.
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Fig. 2. Segmentation accuracies of the proposed ML and

Bayes segmentation method to manually (Manual) and au-

tomatically (LVCSR) transcribed text streams.

Secondly, we performed another experiment under a more

realistic condition where the true number N of topics was

unknown. We also compared the proposed method with one

of the conventional methods, namely, TextTile. Test data

was exactly the same as in the previous experiment.

In the proposed method we applied Bayes segmenta-

tion, which showed better performance in the previous ex-

periment. Consequently, the number of topics was deter-

mined by the Bayesian model posterior distribution, where

the lower and upper bounds were set to Nmin = 3 and

Nmax = 12.

In the conventional method, there were at least three tun-

able parameters: (1) window width, (2) the number of iter-

ations in smoothing the cosine similarity and (3) the lower

bound of a story length. Here we assumed (3) was identical

to (1), and optimized (1) and (2). Note that you should be

careful so as to conduct open-data experiments. In this case,

we used a leave-one-out procedure, that is to say, leaving

one broadcast out for testing, and optimizing parameters (1)

and (2) using the remaining four broadcasts. We repeated

this small experiment five times by rotating the test data.

The result shows that the proposed method produces

higher accuracy in both manually and automatically tran-

scribed text streams (Table 1). And furthermore, the pro-

posed method works on automatically transcribed (error-

Table 1. Mean segmentation accuracies of the proposed

method and the conventional method to manually (Manual)

and automatically (LVCSR) transcribed text streams.

Conventional Proposed
Manual 0.785 0.845
LVCSR 0.749 0.829

contained) text streams with small degradation of accuracy

compared to the conventional method.

4. CONCLUSION

We proposed a novel parameter-free text segmentation method,

which was formulated as (variational) Bayes estimation of

an HMM from an input text stream. We experimentally

showed that the proposed method achieved good perfor-

mance in segmenting text streams transcribed from broad-

cast news programs using LVCSR.

Our future work includes reducing the local maxima

arising in long text streams, and introducing tied-mixture

architecture to HMMs. A tied-mixture HMM can be de-

scribed with fewer parameters and with high scalability. It

will reduce data sparseness occurring in text streams. Fur-

thermore, such a model is mathematically interesting as dy-

namic generalization of the probabilistic latent semantic anal-

ysis (PLSA) [5].
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